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This paper uses traditional machine learning methods and deep neural networks based on both
firm-specific characteristics and macroeconomic variables to price China’s A-share stock market.
The main contributions are as follows: We give the stochastic discount factor a flexible form and
compare different models’ performances. Since the Chinese government adopts various policies to
maintain financial stability, we borrow the idea from generative adversarial network to find the true
SDF by selecting moment condition that minimizes return volatility. Additionally, we compare this
model’s performance with Chen’s work and find that this model can obtain higher Sharpe ratio and
R2.
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I. INTRODUCTION

The Chinese capital market, despite its short history,
has become the second largest in the world. An essen-
tial feature of China’s stock market is that Chinese gov-
ernment leans against short-term market fluctuations ac-
tively to promote financial stability. The government
achieves this goal through frequent policy changes, rang-
ing from changes in interest rates and bank reserve re-
quirements to stamp taxes on stock trading, suspen-
sions and quota controls on IPO issuances, modifica-
tions to rules on mortgage rates and first payment re-
quirements, and direct trading in asset markets through
government-sponsored institutions. These tight controls
once made China’s market isolated and hard to under-
stand. As a consequence of these large-scale interven-
tions, China’s financial markets are highly speculative
and largely populated by inexperienced retail investors.
In 2008, the China Securities Regulatory Commission is-
sued the China Capital Markets Development Report,
which shows retail accounts with a balance of less than
1 million RMB contributed to 45.9% of stock positions
and 73.6% of trading volume on the Shenzhen Stock Ex-
change. This fact highlights speculative behavior of small
investors and lack of mature institutional investors as
important ’Chinese Characteristics’. The market experi-
ences high price volatility and the highest turnover rate
among major stock markets in the world.

This special market structure motivates me to consider
how to price the stock market correctly and whether the
market is efficient. On the one hand, small investors’
actions are hard to predict because they are not well
equipped with financial knowledge and their behaviour is
full of uncertainty. Therefore, the market might be more
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consistent with the random walk hypothesis. On the
other hand, since there are irrational factors in such a fi-
nancial market, speculation might make traditional mod-
els fail to price stocks successfully and cause larger pric-
ing errors. Additionally, Chinese government’s frequent
intervention plays an important role in reducing market
volatility, which prevent stocks’ prices from changing too
much. Xiong Wei, etc develop a comprehensive theory
framework for China’s model of managing the financial
system in which investors with a highly speculative na-
ture only care about short-term return rate and asset
fundamental is unobserved because of realistic informa-
tion frictions faced by investors and policy makers. Noise
traders reflect inexperienced retail investors in China’s
stock market and they contribute to price volatility and
instability. Under these conditions government’s inter-
vention is necessary and there is a trade off between en-
suring financial stability and improving information effi-
ciency because government intervention makes noise in
government policy an extra factor in asset pricing.

The main idea of this paper is to model asset prices un-
der the background of China’s stock market. Firstly we
give a brief introduction of the framework of asset pricing
theory and how the theory can be applied on real data
under the framework of generalized method of moments.
This part is mostly based on John Cochrane’s outstand-
ing work. Then we start from a simple linear regression
model to predict stock prices, but OLS estimator may
suffer from too many covariates thus the estimation is
not reliable. Machine learning methods, such as Lasso,
Elastic Net and Tree regression propose a solution to deal
with high dimension data. Through adding penalty to
norm of coefficients and non-parametric methods, mod-
els’ performances become much better. Additionally, as
computers become increasingly powerful, deep learning
network is increasingly widely used for better non-linear
performance. We compare these models’ results using a
comprehensive dataset of China’s A-share stock market
including both firm-specific characteristics and macroe-
conomic variables. However, empirical results show that
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these models fail to make accurate out-of-sample predic-
tion and the R2 is low, which means that existing the-
ory and empirical methods don’t offer powerful economic
explanation behind the estimated parameters although
they may have good in-sample performances.

A necessary condition to price China’s stock market
correctly is to build the model on economic theory foun-
dation. Taking China’s financial system’s complexity
into consideration, we cannot ignore government’s essen-
tial role in influencing stock prices both directly and in-
directly. A proper pricing model for China should be a
combination of financial theory and econometric method.
Therefore, we choose Xiong’s model for China’s financial
system as our theory basis. In Xiong’s model the govern-
ment needs to trade against noise traders according to its
conditional expectation. Without the government, the
myopia of investors and the price insensitivity of noise
traders jointly lead to market breakdown. We extend
the model to answer two questions: How to estimate
the intensity of government intervention? And how to
find the proper empirical asset pricing model using semi-
parametric econometrics method?

Finally, inspired by the idea that government’s inter-
vention can be a pricing factor we construct a genera-
tive adversarial network. A large amount of literature
uses various machine learning methods to explore the re-
lationship between excess return and covariates. These
machine learning methods take advantage of big data and
partially address ’Curse of Dimension’. Chen proposes a
novel network based on Hansen’s theory that estimating
an SDF minimizing the largest pricing error is closest
to an admissible true SDF in the least square distance.
His work is a perfect combination of asset pricing the-
ory and deep learning. In this paper we also use GAN
model to find the SDF but we construct the moment
condition by minimizing stocks’ return volatility. Specif-
ically, the moment condition in this network minimizes
return’s variance in a given period. The intuition behind
this method is that when an asset’s volatility is too large
then it will be restricted by policies and government’s
actions. Therefore, adding such a procedure as an opti-
mization condition can be seen as adding government’s
intervene into the pricing kernel and make the network
work better.

II. LITERATURE REVIEW

Our paper contributes to an emerging literature that
uses fancy non-linear model for asset pricing. Gu, Kelly
and Xiu (2020) conduct a comparison of different ma-
chine learning methods for predicting the panel of US
stock returns. Their estimates of the expected risk pre-
mia of stocks map into a cross-sectional asset pricing
model. Bryzgalova, Pelger and Zhu (2020) include the
no-arbitrage condition constraint into deep learning net-
works and obtain better results for asset pricing. Addi-
tionally, they identify the dynamic pattern in macroeco-

nomic time series using Long Short Term Memory unit.
Freyberger, Neuhierl and Weber (2020) use Lasso selec-
tion methods to estimate the risk premia of stock returns
as a non-linear additive function of characteristics. Rossi
(2018)) uses Boosted Regression Trees to form condi-
tional mean-variance efficient portfolios based on market
portfolio and risk-free asset. Gu, Kelly and Xiu (2019)
use an auto-encoder neural network to extend traditional
linear model. Bryzgalova, Pelger and Zhu (2020) use de-
cision trees to build a cross-sectional of asset returns.
Avramov, Cheng and Metzker (2020) propose that trade
frictions may have a negative effect on the performance
of machine learning algorithm. Cong, Tang, Wang, and
Zhang (2020) propose reinforcement-learning-based port-
folio management to directly optimize investors’ objec-
tives under trading friction constraints. However, there
are not too much literature using such statistical learning
methods for China’s stock market. We compare different
models’ performances based on both firm characteristics
and macroeconomic variables.

Based on Fama and French’s unprecedented master-
piece, see Fama and French (1993) and Fama and French
(2015), new statistical methods have been developed to
study the cross-section of returns in the linear frame-
work but accounting for large amount of conditional in-
formation. Lettau and Pelger (2020) extend PCA to ac-
count for no-arbitrage condition. They show that a no-
arbitrage penalty term can overcome the low signal-to-
noise ratio problem in financial data and find appropri-
tiate pricing kernel. Kozak, Nagel and Santoshr (2020)
estimate the SDF based on charateristic-sorted factors
with a modified elastic net regression. Pelger (2020) ap-
ply PCA to stock returns projected on characteristics to
obtain a conditional multi-factor model where the load-
ings are a linear combination of characteristics. Pelger
(2020) applies PCA on high-frequency data to capture
the time-variant factor risk. Pelger and Xiong (2019)
show that macroeconomic variables are relevant to cap-
ture time variation in PCA-based factors. Bansal and
Viswanathan (1993) and Chen and Ludvigson (2009) pro-
pose using a given set of conditional GMM equations
to estimate the SDF with neural networks, but restrict
themselves to a small number of conditional variables.
We are firmly convinced that imposing theoretical eco-
nomic structure on learning algorithm can substantially
improve model’s performance. A similar idea is also pro-
posed by Lewis and Syrgkanis (2018) for non-parametric
instrumental variable regressions. We also construct test
portfolios based on economic theory and we think im-
posing theoretical structure on learning algorithm can
significantly improve model’s performance and make it
more powerful to explain the reality.

Then it is important to find out which conditions
should be added into the pricing model. China’s stock
market has its own speciality caused by government’s
active intervention in financial markets. Brunnermeier,
Sockin and Xiong (2020) develop a theoretical framework
in which interventions prevent a market breakdown and
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a volatility explosion caused by the reluctance of short-
term investors to trade against noise traders. In this
model intervention becomes an additional factor driv-
ing asset prices and worsens information efficiency of
asset prices. Packer and Spiegel (2016) find a signifi-
cant positive relationship between the number of IPOs
and the market index return in China’s stock market,
which confirming China Securities Regulatory Commis-
sion(CSRC)’s policy to lean against the market cycle. In
addition, on July 8, 2015, the CSRC imposed a lockup on
shareholders with 5% or more of their companies. Peo-
ple’s Bank of China(PBC), the central bank, also adopt
policies to lean against the stock market cycle. During
the 2015 stock market crash, PBC cut interest rates and
reduced reserve ratios to boost the liquidity of financial
system. Xing, Pan and Wangl (2018) provide an empir-
ical overview of the Chinese capital market’s historical
development and main empirical characteristics. Based
on Xiong’s work, We propose an estimation procedure to
test the role of government in maintaining financial sys-
tem as well as a semi-parametric method to price China’s
A-share stocks.

We describe the dataset and basic models I use in Sec-
tion 3. Section 4 develops the theoretical framework and
econometric methods to test the hypothesis. Section 5
builds a generative adversarial network(GAN) with an
objective to minimize price volatility and Section 6 con-
cludes.

III. FRAMEWORK OF ASSET PRICING
THEORY AND EMPIRICAL RESULTS

A. Stochastic Discount Factor

We start from basic concept of stochastic discount fac-
tor. A discount factor m is a random variable that gen-
erates prices from payoffs, p = E(mx). m is function of
observed data which means m = f(D). Generally speak-
ing, these two equations describe the whole process of
asset pricing.

1. Payoff Space, Law of One Price and Existence of
Discount Factor

The payoff space X is the set(or subset) of all
the payoffs that investors can purchase. If there are
complete contingent claims to S states of nature, then
X = RS . The payoff space includes primitive assets,
and it is often assumed that investors can also form
new payoffs by forming any portfolio, which is shown in
axiom 1. If investors can form portfolios of basic payoffs,
then the payoff space consists of all linear combinations
of original payoffs X = c′x where c is a vector of
portfolios weights. Law of one price states that if two
portfolios have the same payoffs in every state of nature,
then they must have the same price. This law makes

sure that investors cannot make instantaneous prof-
its by repackaging portfolios, which is shown in axiom 2.

AXIOM 1: x1, x2 ∈ X implies ax1 + bx2 ∈ X for any
real number a, b.

AXIOM 2: p(ax1 + bx2) = ap(x1) + bp(x2).

THEOREM 3.1: Given free portfolio formation axiom
1 and the law of one price axiom 2, there exists a unique
payoff x∗ ∈ X such that p(x) = E(x∗x) for all x ∈ X.

x∗ is a discount factor. This theorem means any linear
function on a space X can be represented by inner prod-
uct with a vector that lies in X. There may be other
discount factors not in X. Unless the market is com-
plete, there are an infinite number of random variables
that satisfy p = E(mx) then p = E[(m+ϵ)x] for any any ϵ
orthogonal to x, E(ϵx) = 0. This construction generates
all of the discount factors. Reversing the argument, x∗ is
the projection of any stochastic discount factor m on the
space X, this discount factor is known as the mimicking
portfolio for m. Algebraically,

p = E(mx)

= E[(proj(m | X) + ϵ)x]

= E[proj(m | X)x].

(1)

THEOREM 3.2: No arbitrage implies the existence of
a strictly positive(positive in each state) discount factor,
m≥ 0, p = E(mx), ∀x ∈ X.

2. Factor Pricing Models

A traditional asset pricing model is consumption-based
model. To be specific, consider the standard power utility
function

u′(c) = c−γ . (2)

Then, excess returns should obey

0 = Et(β(
ct+1

ct
)−γRe

t+1). (3)

Given a value of γ, we can use data on consumption
and returns to check whether actual expected returns
are in accordance with the formula. However, it has a
poor empirical performance. This motivates us to find
alternative asset pricing models, which means searching
for other functions for stochastic discount factor m. A
widely used method is factor model that model marginal
utility in terms of other variables directly. Factor model
specifies taht the stochastic discount factor is a linear
function of a set of proxies,
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mt+1 = a+ bAf
A
t+1 + bBf

B
t+1 + .... (4)

The factors are selected as plausible proxies for
marginal utility, for example, events that describe
whether typical investors are happy or unhappy. A fa-
mous single-factor model is the Capital Asset Pricing
Model

mt+1 = a+ bRW
t+1, (5)

where RW is the rate of return on market portfolio
(such as value averaged NYSE portfolio). The interna-
tional Capital Asset Pricing Model suggests macroeco-
nomic variables such as GNP and inflation and variables
that forecast macroeconomic variables or asset returns as
factors. Term structure models such as the Cox-Ingersoll-
Ross model specify that the discount factor is a function
of a few term structure variables such as short rate of
interest and a few interest rate spreads.

3. Arbitrage Pricing Theory

The bad performance of consumption-based model mo-
tivates us to tie the discount factor m to other data.
Typically we use linear factor pricing models and they
dominate discrete time empirical work. APT starts from
a statistical characterization. There is a big common
component to stock returns: when the market goes up,
most individual stocks also go up. Beyond the market,
groups of stocks move together. Finally, each stock’s re-
turn has some completely idiosyncratic movement. This
is a characterization of realized returns, outcomes or pay-
offs. The point of the APT is to start with this statis-
tical characterization of outcomes, and derive something
about expected returns or prices. The intuition behind
the APT is that the completely idiosyncratic movements
in asset returns should not carry any risk prices, since in-
vestors can diversify them by holding portfolios. There-
fore, risk prices or expected returns on a security should
be related to the security’s covariance with the common
components or ”factors” only.

The APT models the tendency of asset pay-
offs(returns) to move together via a statistical factor de-
composition

xi = αi +

M∑
j=1

βijfj + ϵi

= αi + β′
if + ϵi,

(6)

fj are the factors and βij are factor loadings. Addi-
tionally, the factor model is equivalent to the expression
of risk premium regression model, which means:

mt+1 = a+ b′ft+1 ⇐⇒ E(Rt+1) = α+ β′λ. (7)

B. Mean-Variance Frontier and Beta
Representations

1. Expected Return-Beta Representations

Much empirical work in finance is cast in terms of ex-
pected return - beta representations of linear factor pric-
ing models, of the form

E(Ri) = α+ βi,aλa + βi,bλb + ..., i = 1, 2..., N. (8)

The β terms are defined as the coefficients in a multiple
regression of returns on factors,

Rt = α+ βafa,t + βbfb,t + ...+ ϵt, t = 1, ..., T. (9)

This is a time-series regression, since we run a regres-
sion across time for each security. Factors f mean proxies
for marginal utility growth such as consumption growth
or the return on market portfolio(CAPM). We run re-
turns on contemporaneous factors because this regression
is not about predicting returns from variables seen ahead
of time. It aims to measure contemporaneous relations
or risk exposure.

The point of beta model is to explain the variation in
average returns across assets. βi,a is interpreted as the
amount of exposure of asset i to factor a risks, and λa is
interpreted as the price of such risk exposure. The betas
cannot be asset-specific or firm-specific characteristics,
such as the size of the firm or book to market ratio. It
is true that expected returns are associated with or cor-
related with many such characteristics. Stocks of small
companies or of companies with high book-to-market ra-
tios do have higher average returns. But the correla-
tion must be explained by some beta. The proper beta
should drive our any characteristics in cross-sectional re-
gressions. For example, expected returns are truly re-
lated to size, one could buy many small companies from a
large holding company. It would pay low average returns
to shareholders while earn a large average return on its
holdings. The problem is that ”large” holding company
will still behave like a portfolio of small stocks. Thus,
only if asset returns depend on how you behave rather
than who you are - on betas rather than characteristics -
can a market equilibrium survive such simple repackag-
ing schemes.

If there is a risk free rate, then Rf = α. We often ex-
amine factor pricing models using excess returns directly.
Differencing between Ri and Rf we obtain

E(Rei) = βi,aλa + βi,bλb + ..., i = 1, 2..., N. (10)

Here, βia represents the regression coefficient of the
excess return on the factors. Start with 1 = E(mRi) =
E(m)E(Ri) + Cov(m,Ri), thus
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E(Ri) =
1

E(m)
− Cov(m,Ri)

E(m)

= α+ (
Cov(m,Ri)

V ar(m)
)(−V ar(m)

E(m)
),

(11)

where α = 1
E(m) . Define βi,m = (Cov(m,Ri)

V ar(m) ) and λm =

(−V ar(m)
E(m) ), we get a single beta representation,

E(Ri) = α+ βi,mλm. (12)

It is often useful to express a pricing model in a way
that the factor is a payoff rather than a real factor such
as consumption growth. It is even more useful if the ref-
erence payoff is a return because the factor risk premium
is also the expected excess return.

2. An Orthogonal Characterization of the Mean-Variance
Frontier

Define R∗ as the return corresponding to the payoff
x∗ that can act as the discount factor. The price x∗ is
p(x∗) = E(x∗x∗) and R∗ = x∗

p(x∗) . Then define

Re∗ = proj(1 | Re), Re = {x ∈ X s.t. p(x) = 0}, (13)

and we can get

E(Re) = E(1×Re)

= E[proj(1 | Re)×Re]

= E(Re∗Re),

(14)

THEOREM 3.3: Every return Ri can be expressed as
Ri = R∗ + wiRe∗ + ni

where wi is a number and ni is an excess return with
property E(nI) = 0. The three components are orthogo-
nal,

E(R∗Re∗) = E(R∗ni)

= E(Re∗ni) = 0.
(15)

This theorem quickly implies the characterization of
the mean variance frontier,

THEOREM 3.4: Rmv is on the mean-variance frontier
if and only if

Rmv = R∗ + wiRe∗. (16)

A relation between the Sharpe ratio of an excess return
and the volatility of discount factors is,

σ(m)

E(m)
≥ | E(Re) |

σ(Re)
. (17)

Quckly,

0 = E(mRe)

= E(m)E(Re) + ρσ(m)σ(Re).
(18)

This implies a beautiful duality,

min
{all m that price x∈X}

σ(m)

E(m)

= max
{all excess returns Re in X}

E(Re)

σ(Re)
.

(19)

The return R∗ = x∗

E(x∗2) can also serve as the factor in
a beta pricing model.

THEOREM 3.5: 1 = E(mRi) implies an expected re-
turn - beta model with x∗ = proj(m | X) as factors,
e.g.

E(Ri) = α+ βi,x∗λx∗

= α+ βi,R∗ [E(R∗)− α].
(20)

Suppose we have an expected return - beta model
such as CAPM, APT, etc. An expected return - beta
model is equivalent to a model for the discount factor
that is a linear function of the factors in the beta
model.This result gives the connection between the
discount formulation and the factor model formulation
common in empirical work.

THEOREM 3.6: Given the model

m = 1 + b′[f − E(f)]; E(mRe) = 0. (21)

one can find λ such that E(Re) = β′λ, where β are
the multiple regression coefficients of excess returns Re

on the factors.

3. Conditioning Information

If payoffs and discount factors were independent and
identically distributed (i.i.d) over time, then conditional
expectations would be the same as unconditional expec-
tations and we would not have to worry about the dis-
tinction. But stock price or dividend ratios, bond and
option prices all change over time. So the model should
be written as
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pt = Et[mt+1xt+1 | It]. (22)

One approach is to specify and estimate explicit statis-
tical models of conditional distributions of asset payoffs
and discount factor variables(e.g. consumption growth).
But as we make the conditional mean, variance, covari-
ance and other parameters of the distribution of N re-
turns depend flexibly on M information variables, the
number of required parameters can quickly exceed the
number of observations.

Take unconditional expectations to obtain E(pt) =
E(mt+1xt+1). Suppose we multiply the payoff and price
by an instrument zt observed at time t. Then

ztpt = Et(mt+1xt+1zt). (23)

Take unconditional expectation, we can get

E(ptzt) = E(mt+1xt+1zt). (24)

Group (xt+1zt) and call it a payoff x = xt+1zt with
price p = E(ptzt). So we can think of it as a price and
a payoff, and apply all the asset pricing theory directly.
ztxt+1 are the payoffs to managed portfolios. An investor
who observes zt invest in an asset according to the value
of zt. Practically every test uses managed portfolios.
For example, the size, beta, industry, book-market
ratio and so forth portfolios are all managed portfolios,
since their composition changes every year in response
to conditioning information.Checking the expected
price of all managed portfolios is, in principle, sufficient
to check all the implications of conditioning information.

THEOREM 3.7: If E(zt) = E(mt+1Rt+1zt), ∀zt ∈ It,
then E(mt+1Rt+1 | It) = 1.

E(mt+1Rt+1 | It) is equal to a regression forecast of
mt+1Rt+1 using every variable zt ∈ It which means ev-
ery variable and every nonlinear measurable transforma-
tion of every variable. But there is a practical limit to
the number of instruments zt because only variables that
forecast returns or m add new information.

C. Machine Learning Methods

1. Lasso and Elastic Net Regression

Lasso(Least Absolute Shrinkage and Selection Opera-
tor) is proposed by Robert Tibshirani. It can get a refined
model by constructing a penalty function to shrinkage
some coefficients. Mathematically,

b̂ = argmin
b

| Y −
p∑

j=1

Xjbj |2, s.t.
p∑

j=1

| bj |≤ t. (25)

This expression is equivalent to

b̂ = argmin
b

| Y −
p∑

j=1

Xjbj |2 +λ

p∑
j=1

| bj |, (26)

where λ and t are one-to-one correspondent tuning pa-
rameters. Through changing values of t we can shrinkage
overall coefficients. Cross-validation method can be used
for determination of t, which is proposed by Efron and
Tibshirani in 1993.

Lasso’s requirement for data is relatively low. No mat-
ter the data is discrete or continuous, Lasso can deal
with it. Additionally, Lasso can decrease the complexity
of selecting variables.

Elastic Net is a linear regression model using L1 and
L2 as prior regularization matrices. This combination is
used for sparse models with few non-zero weights, such as
Lasso, but it can maintain Ridge’s regularization prop-
erty. We can use L1 ratio parameter to adjust the convex
combination of L1 and L2 (a special kind of linear combi-
nation). Elastic Net is useful when multiple variates are
related to another variate. Lasso prefers to choose one
on them at random, while Elastic Net prefers to choose
both. In practice, one advantage of the trade-off between
Lasso and Ridge is that it allows Ridge’s stability to be
inherited in the under rotate process. The objective func-
tion of Elastic Net is:

min
w

1

2n
||Xw − y||22 + λ1||w||1 + λ2||w||22. (27)

2. Boosted Regression Trees and Random Forest

Regression trees have become a popular machine learn-
ing approach for incorporating multi-way predictor in-
teractions. Unlike linear models, trees are fully non-
parametric and posses a logic that departs markedly from
traditional regression. At a basic level, trees are designed
to find groups of observations that behave similarly to
each other. A tree grows in a sequence of steps. At
each step, a new branch sorts the data leftover from the
proceeding step into bins based on one of the predictor
variables. This sequential branching slices the space of
predictors into rectangular partitions and approximates
the unknown function with the average value of the out-
come variable within each partition. Formally, the pre-
diction of a tree T , with K leaves(terminal nodes), and
depth L, can be written as

g(zi,t; θ,K,L) =

K∑
k=1

θk1{zi,t∈Ck(L)}, (28)

where Ck(L) is one of the K partitions of the data.
Each partition is a product of up to L indicator functions
of the predictors. The constant associated with partition
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k is defined to be the sample average of the predictors. To
grow a tree is to find the optimal bins that discriminate
among the potential outcomes. The specific predictor
variable upon which a branch is based and where the
branch is split, is chosen to minimize the forecast error.
The expanse of potential structures, however, precludes
exact optimization. We follow Breiman algorithm whose
basic idea is to myopically optimize forecast error at the
start of each branch. At each new level, we choose a
sorting variable from the set of predictors and split value
to maximize the discrepancy among average outcomes in
each bin. The loss associated with the forecast error for
a branch C is often called ”impurity”, which describes
how similarly observations behave on either side of the
split. We choose the most popular l2 impurity for each
branch of the tree:

h(θ, C) =
1

| C |
∑

zi,t∈C

(ri,t+1 − θ)2, (29)

where | C | denotes the number of observations in
set C. Given C, it is clear that the optimal choice of
θ : θ = 1

|C|
∑

zi,t∈C ri,t+1. The procedure is equivalent
to finding the branch C that locally minimizes the im-
purity. An important advantage of a tree model is that
it is invariant to monotonic transformations of predic-
tors. Additionally, it can accommodate categorical and
numerical data in the same model and approximate po-
tentially severe non-linearities. A tree of depth L can
capture (L− 1)-way interactions.

Trees are among the prediction methods most prone to
overfit, and therefore must be heavily regularized. The
first regularization method is boosting, which recursively
combines forecasts from many over-simplified trees. Shal-
low trees on their own are weak learners with minuscule
predictive power. The theory behind boosting suggests
that many weak learners may comprise a single strong
learner with greater stability. The second regularization
method is random forest which is an ensemble method
combining forecasts from many different trees. It is a
variation on a more general procedure known as boot-
strap aggregation. Baseline tree bagging procedure draws
B different bootstrap samples from the data, fits a sepa-
rate regression tree to each, then averages their forecasts.

D. Empirical Results

We collect monthly individual stock returns data for all
China A-share stocks. The sample period spans February
2000 to December 2019, totaling 20 years. The number of
stocks in my sample is almost 3500, with average number
of stocks per month around 2500. In addition, we build a
large set of stock level predictive characteristics based on
the cross section of stock return literature. We divide the
data into 19 years of training sample and 1 year of test
sample.Table I presents the comparison of machine learn-

ing techniques in terms of their out-of-sample predictive
R2.

Figure 1 presents the comparison of machine learning
techniques in terms of their out-of-sample predictive R2.
We compare 14 models in total, including OLS with all
covatiates, OLS with three factors(size, book-to-market
and momentum as the only covaiates), PLS, PCR, elas-
tic net, GLM, RF, GBRT and neural networks with one
to five layers. The third value in each model is R2 for the
entire sample. Traditional statistical methods are likely
to suffer from overfitting and have bad out-of-sample per-
formance. A sparse parameterization, regularization or
penalizing the specification generates a substantial im-
provement. Dimension reduction methods, such as PLS
and PCR, also raise R2 compared with OLS-3. The im-
provement of dimension reduction over variable selection
via elastic net suggests that characteristics are partially
redundant and fundamentally noisy signals. Combining
them into low-dimension components can eliminate some
noise and improve signal-to-noise ratio. Lasso fails to
improvement the performance because it includes no in-
teraction among different characteristics. This implies
linear model with univariate expansions provide little in-
crement although it selects more features compared with
elastic net.

Nonparametric methods, such as boosted trees, ran-
dom forest and neural networks, have relatively better
performance. This fact shows interaction between differ-
ent characteristics have powerful explanation for cross-
section returns. Incorporating these complex interactions
which are embedded in tree and neural network models
but missed in other techniques is important. However,
more layers in network is not necessary for better per-
formance. NN5 is not as good as NN2, NN3 and NN4,
which means in the monthly return setting, the benefits
of deep learning is limited. Figure 2 shows sharpe ra-
tio of different models and the pattern is very similar to
performence of R2.

Now we investigate the relative importance of individ-
ual covariates. For each model, we calculate the reduc-
tion of R2 from setting all values of a given predictor
to 0 within each training sample, and average these into
a single importance measure for each predictor. Figure
3 shows the results. Variable importance is normalized
to sum to 1 for convenience. Figure4 presents results of
portfolio analysis.

Recall that an important feature of China’s stock mar-
ket is that it is full of noise traders. Consequently the
government have to be active in intervening the stock
market by trading against myopic investors. Government
adopts necessary policies to maintain financial stability
and these policies have both direct and indirect effects
on stock returns. This may be one of the source that can
improve model’s performance.
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FIG. 1. R2 of Different Machine Learning Models

FIG. 2. Sharpe Ratio of Different Machine Learning Models

IV. GMM AND GENERATIVE ADVERSARIAL
NETWORK

A. Interpreting GMM Procedure

E(mRe) = 0 can be translated to a predicted expected
return E(Re) = −Cov(m,Re)

E(m) and we can write the pricing
error as

g(θ) =
1

Rf
(E(Re)− (−Cov(m,Re)

E(m)
)), (30)

If we express the model in expected return-beta lan-
guage E(Rei) = αi + β′

iλ, then the GMM objective is

proportional to the Jensen’s alpha measure of mis-pricing
g(θ) = 1

Rf
α.

Ideally we should pick θ to make every element of
gT (θ) = 0 and thus have the model price assets per-
fectly. However, there are usually more moment condi-
tions(returns times instruments) than there are parame-
ters. So we choose θ to make gT (θ) as small as possible.,
by minimizing a quadratic form,

min
{θ}

gT (θ)
′WgT (θ),

W is a weighting matrix that directs GMM to empha-
size some moments or linear combination of moments
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FIG. 3. Sharpe Ratio of Different Machine Learning Models
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FIG. 4. Portfolio Analysis

TABLE I. Empirical Results of Different Modelsa

Model OLS OLS-3 PLS PCR ENet RF GBRT NN1 NN2
Low -1.53 -0.99 -1.54 -1.68 -1.57 -1.29 -1.46 -1.47 -1.51

-1.04 -0.84 -1.02 -0.94 -1.01 -0.92 -1.03 -1.00 -0.992
-0.82 -0.73 -0.78 -0.68 -0.80 -0.80 -0.87 -0.78 -0.833
-0.66 -0.64 -0.64 -0.54 -0.64 -0.70 -0.73 -0.64 -0.684
-0.52 -0.57 -0.50 -0.41 -0.48 -0.60 -0.57 -0.54 -0.615
-0.40 -0.47 -0.39 -0.30 -0.39 -0.48 -0.45 -0.43 -0.506
-0.23 -0.39 -0.22 -0.18 -0.22 -0.32 -0.30 -0.26 -0.347
-0.10 -0.22 -0.10 -0.05 -0.10 -0.12 -0.03 -0.11 -0.148
-0.12 -0.03 0.13 0.13 0.13 0.17 0.25 0.12 0.179
-0.69 0.55 0.65 0.46 0.64 0.84 0.93 0.66 0.8010

a This table shows empirical results of different machine learning
models. OLS has a relatively poor performance because of curse
of dimension. Dimension reduction methods can partly solve
the problem. Neural network has a better performance because
it allows for flexible nonlinear expression.

at the expense of others. The second-stage estimate
picks a weighting matrix based on statistical consid-
erations. Some assets may have much more variance
than other assets. For those assets, the sample mean
gT = ET (mtRt−1) will be a much less accurate measure-
ment of the population mean E(mR−1), since the sample
mean will vary more from sample to sample. Therefore,
we should pay less attention to pricing errors from as-
sets with high variance. Specifically, using the inverse of
variances of ET (mtRt − 1) on the diagonal.

Add instruments zt observed at time t to models and
replace payoffs with returns, the moment conditions are
quadratic form,

E[mt+1(θ)(Rt+1 ⊗ zt)− (1⊗ zt)] = 0. (31)

There are several problems about empirical asset pric-
ing. Firstly, a large amount of literature consider SDF as
a linear combination of some characteristics. However,
this assumption might be too strong and seems to be
mis-specified. We need a more flexible non-parametric
method that capture the non-linear relationship. Sec-
ondly, we should find the correct test assets. Thirdly,
SDF depends on variables that can forecast economic
states. Exposure and compensation for risk should de-
pend on the economic conditions.In this paper I estimate
a general non-linear asset pricing model with deep neu-
ral networks for all China A-Share stocks based on a
substantial set of macroeconomic and firm-specific infor-
mation. Finding the SDF weights is equivalent to solv-
ing a method of moment problem. The conditional no-
arbitrage moment condition implies infinitely many un-
conditional moment conditions

E[mt+1R
e
i,t+1g(It, Ii,t)]

for any function g(·) : Rp×Rq → RD, where It×Ii,t ∈
Rp × Rq denotes all the variables in the information set
at time t and D is the number of moment conditions. I
use two kinds of adversarial approach to estimate an as-
set pricing model for individual stock returns that take
advantage of both fundamental and macroeconomic in-
formation. The first one is to use no-arbitrage condition
as criterion function for constructing test assets with the
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largest pricing error. The objective function can be writ-
ten as

min
w

max
g

1

N

N∑
j=1

∥E[(1−
N∑
i=1

w(It, Ii,t)R
e
i,t+1)R

e
j,t+1)g(It, Ii,t)]∥2.

The other model takes Chinese government’s intervene
into consideration and uses government’s goal as opti-
mization objective. Specifically, for each stock, I find the
optimal moment condition to minimize the volatility of
stock monthly returns. This moment condition describes
government’s actions in maintaining financial stability
and reflects China A share stock market’s ’Chinese char-
acteristics’.

g∗ = argmin
g

1

N

N∑
i=1

1

T

T∑
t=1

[mt+1R
e
i,t+1g(It, Ii,t)

− 1

T

T∑
t=1

mt+1R
e
i,t+1g(It, Ii,t)]

2.

(32)

B. Deep Neural Network

A feedforward network is a flexible non-parametric es-
timator for a general functional relationship y = f(x).
FFN not only estimates non-linear relationship between
covariates and variable but also captures interaction ef-
fects between a large dimensional set of covariates. A
simple one-layer neural network combines the original co-
variates linearly and applies a non-linear transformation.
This non-linear transformation is based on an element-
wise operating activation function, for example, rectified
linear unit which is defined as

ReLU(x) = max(xk, 0). (33)

The output is simply a linear transformation of the
output from the hidden layer.

x(1) = ReLU(W (0)Tx(0) + w
(0)
0 )

= ReLU(w
(0)
0 +

K(0)∑
k=1

w
(0)
k x

(0)
k ),

(34)

y = W (1)Tx(1) + w
(1)
0 . (35)

THEOREM 4.1: If ϕ(·) is a non-constant, bounded
monotone increasing continuous function, LD = [0, 1]d.
Then for any f(x) ∈ C(LD), there exists an integer m, a
group of real numbers vi, bi ∈ R and a real vector wi ∈
Rd, such that we can define

F (x) =

m∑
i=1

viϕ(w
T
i x+ bi) (36)

that satisfies for any ε ≥ 0,

|| F (x)− f(x) ||≤ ε, ∀x ∈ Ld. (37)

This theorem guarantees that a feedforward network
can approximate any bounded function with arbitrary
accuracy.

A Recurrent Neural Network with Long-Short-Term-
Memory estimates hidden macroeconomic state vari-
ables. Instead of passing macroeconomic variables It
as covariates to the FFN directly, I extract their dy-
namic patterns with a specific RNN and only pass on
a small number of hidden states capturing these dynam-
ics. RNNs are a family of neural networks for processing
sequences of data. They estimate non-linear time-series
dependencies for vector-valued sequences in a recursive
form. A standard RNN is model takes the current input
variable xt and previous hidden state hRNN

t−1 and per-
forms a non-linear transformation to get the current state
hRNN
t .

hRNN
t = hRNN (x0, ...xt)

= σ(Whh
RNN
t−1 +Wxxt + w0),

(38)

where σ is a non-linear activation function. Intuitively,
a simple RNN combines two steps: First, it summarizes
cross-sectional information by linearly combining a large
vector xt into a lower dimensional vector. Second, it
is a non-linear generalization of an auto-regressive pro-
cess where the lagged variables are transformations of the
lagged observed variables. The LSTM model is designed
to deal with lags of unknown and potentially long du-
ration in the time series, which makes it well-suited to
detect business cycles. Specifically, LSTM is composed
if a cell and three regulators: an input gate, a forget gate
and an output gate. Intuitively, the cell is responsible for
keeping track of the dependencies between the elements
in the input sequence. The input gate controls the ex-
tent to which a new value flows into the cell, the forget
gate controls the extent to which a value remains in the
cell and the output gate controls the extent to which the
value in the cell is used to compute the output activation
of the LSTM unit.

Take xt = It as the input sequence of macroeconomic
information and the output is the state processes ht. At
each step, a new memory cell c̃t is created with current
input xt and previous hidden state ht−1

c̃t = tanh(W
(c)
h ht−1 +W (c)

x xt + w
(c)
0 ). (39)
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The input and forget gates control the memory cell,
while the output gate controls the amount of information
stored in the hidden state.

inputt = σ(W
(i)
h ht−1 +W (i)

x xt + w
(i)
0 ), (40)

forgett = σ(W
(f)
h ht−1 +W (f)

x xt + w
(f)
0 ), (41)

outputt = σ(W
(o)
h ht−1 +W (o)

x xt + w
(o)
0 ). (42)

Denoting the element-wise product by ◦, the final
memory cell and hidden state are given by

ct = forgett◦ct−1+inputt◦c̃t, ht = outt◦tanh(ct). (43)

We use the state processes hT instead of the macroe-
conomic variables It as input to the SDF network.

Then we build two models inspired by generative ad-
versarial network in which we choose conditioning func-
tion g(·) that leads to the largest pricing error and the
smallest return volatility, respectively. There are three
major steps to train the model. In the first step, we
choose an SDF that minimizes unconditional loss. In the
second step we maximize the loss and minimize the vari-
ance respectively by optimizing parameters in the con-
ditional network given SDF obtained in step 1. In the
third step, given the conditional network we update the
SDF network to minimize the conditional loss. The two
LSTMs that summarize macroeconomic information are
based on the criteria function of the two networks, that
ht are the hidden states that can minimize the pricing er-
rors while hg

t generate the test assets with largest pricing
errors and smallest volatility respectively.

More specifically, model 1 minimizes the maximum
pricing error in the second step

{ŵ, ĥt, ĝ, ĥ
g
t } = min

w,ht

max
g,hg

t

L1(w | ĝ, ĥg
t , ht, Ii,t), (44)

where

L1 =
1

N

N∑
j=1

∥E[(1−
N∑
i=1

w(ht, Ii,t)R
e
i,t+1)R

e
j,t+1g(h

g
t , Ii,t)]∥2.

(45)
Model 2 minimizes return volatility, which can be seen

as a two-step optimization problem.
In step 1:

{ĝ, ĥg
t } = min

g,hg
t

V ar[Mt+1R
e
t+1g(It, Ii,t)], (46)

In step 2:

{ŵ, ĥt} = min
w,ht

1

N

N∑
j=1

E[(1−w(ht, Ii,t)
TRe

t+1)R
e
j,t+1ĝ(ĥ

g
t , Ii,t)]∥2.

(47)
Figure 1 gives a detailed description of the network.

At first I put macroeconomics variables into a RNN net-
work and use LSTM model to estimates the economic
states. Then adding firm-specific characteristics to the
FFN network to get a candidate portfolio weights. RNN
and FFN are also used to find optimal moment condi-
tions. With these conditions and returns I can calculate
the loss function. These two networks compete with each
other until convergence, that is neither the SDF nor the
test assets can be improved.

Due to the high dimensionality and non-linearity of
the problem, training a deep neural network is a com-
plex task. I prevent the model from overfitting and deal
with the large number of parameters by using ”Dropout”,
which is a form of regularization that has generally bet-
ter performance than conventional regularization. I opti-
mize the objective function accurately and efficiently by
employing an adaptive learning rate for a gradient-based
optimization.

C. Data and Training Process

The data comes from RiceQuant database, which is
supported by financial engineering laboratory of school
of economics, Peking University. We use 34 firm-level
characteristics of all China’s A-share stocks from Decem-
ber 2000 to November 2021. For macroeconomic vari-
ables, we use monthly data of 119 macroeconomic vari-
ables from December 2000 to November 2021. Details of
firm characteristics and macroeconomic variables are in
appendix A and appendix B, respectively. Missing val-
ues are filled with average value adjusted by stride. If
data is missing in the last period, then it is filled with
the last true value. There are total 252 months in our
sample. Training set is the first 97 months, validation set
is the next 60 months and test set is the last 95 months.
We keep stocks that appear in all of the three sets and
the number of stocks in total is 1040. Finally We have a
panel data of 224992 observations.

As for training process, firstly we train an un-
conditional network. For the asset pricing equation
E(Mt+1R

e
t+1g(It, Ii,t)) = 0, set g(It, Ii,t) = 1. Since

Mt+1 = 1 − w(It, Ii,t)
TRe

t+1, where It and Ii,t denotes
macroeconomic variables and firm characteristics, respec-
tively. Then the input for the network are Re

t+1, It and
Ii,t and the loss function for the pre-trained uncondi-
tional network for SDF can be written as:
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FIG. 5. Generative Adversarial Network Structure

T∑
t=1

(
1

N

N∑
i=1

(1− w(It, Ii,t+1)
TRe

t+1)R
e
i,t+1)

2.

Now we obtain an unconditional SDF network. The
next step is to train the moment condition g(It, Ii,t).
The network for training g(It, Ii,t) contains an LSTM
and an FFN. The LSTM network’s input is macroeco-
nomic variable whose dimension is 252 × 119(number of
months times number of macroeconomic variables). The
output’s dimension is 252 × 16. We use LSTM network
to extract features and capture the business cycles. For
each period t, we have individual stock’s information of
34 characteristics. Then we splice 34 characteristics and
16 features obtained by the LSTM network and get a new
dataset of 50(34+16) dimension. This 50-dimension data
is the input for the FFN network and the output is an 8-
dimension moment condition g(It, Ii,t). For all stocks in
all periods, dimension of E(Mt+1R

e
t+1g(It, Ii,t)) is 1040

× 252 × 8.
Then for each of the 8 moment conditions g(It, Ii,t) we

can calculate the variance of individual stock i:

V ari,g(Mt+1R
e
i,t+1g(It, Ii,t)))

=
1

T

T∑
t=1

(Mt+1R
e
i,t+1g(It, Ii,t)− E(Mt+1R

e
i,t+1g(It, Ii,t)))

2.

(48)
Next, we calculate the average of V arg and use it

as our loss function to obtain the conditioning function
g(It, Ii,t):

E(V ari,g) =

N∑
i=1

8∑
g=1

V ari,g(Mt+1R
e
i,t+1g(It, Ii,t)). (49)

Using this loss function we can obtain g(It, Ii,t), which
is the moment condition that minimizes variance of the
pricing error. We choose such a moment condition be-
cause it can mimic government’s behaviour to maintain
financial stability in China. Above is what is done in the
first step. In the second step, we obtain optimal weight
w(It, Ii,t) given the moment condition g(It, Ii,t). It is
worth pointing out that we take g(It, Ii,t) as a known
function. In this step we want to minimize the pricing
error, so the loss function is:

1

N

N∑
j=1

∥E[(1−w(ht, Ii,t)
TRe

t+1)R
e
j,t+1ĝ(ĥ

g
t , Ii,t)]∥2.

Then we iterate step 1 and step 2 until they finally con-
vergent. Thus we get the optimal weight w(It, Ii,t) and
moment condition g(It, Ii,t). Since Mt+1 can be seen as
tangency portfolio, we calculate the Sharpe Ratio using

E(Mt+1)√
V ar(Mt+1)

.

D. Empirical Results

Table II shows empirical results of the two models, us-
ing maximum pricing error and minimum return volatil-
ity as optimization condition respectively. Compared
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FIG. 6. Feature Importance in Model 1

FIG. 7. Feature Importance in Model 2
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FIG. 8. Predictive Accumulative Excess Return in Model 1

FIG. 9. Predictive Accumulative Excess Return in Model 2

FIG. 10. Real Accumulative Excess Return in Model 1
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FIG. 11. Real Accumulative Excess Return in Model 2

TABLE II. Generative Adversarial Network with Different Optimization Conditionsa.
Model 1 Model 2

TestValidTrain TestValidTrain
R-Squared 14.60% 0.54% 24.79% 77.70% 6.12% 28.33%
Explained Variation 32.85% 27.20% 23.53% 45.28% 31.73% 30.02%
Sharpe Ratio 0.767 0.438 0.490 1.13 1.53 1.22

a Model 1 is trained with optimization condition that minimizes the maximum pricing error. Model 2 is trained with optimization
condition that minimizes the pricing error generated by the moment condition that minimizes return volatility.

with traditional machine learning methods, generative
adversarial network has a better performance. Out-of-
sample R2 can reach 24.79% and 28.33%, which are far
more than the results in table I.

More importantly, compared model 1 with model 2, we
can find that a GAN model with moment condition that
minimizes return volatility has higher R2 and Sharpe Ra-
tio. This means the model has better ability for pricing
China’s stock market when taking government’s inter-
vene into consideration.

We rank the importance of firm-specific for the pricing
kernel based on the sensitivity of the SDF weight with
respect to these variables. The sensitivity is defined as:

S(xj) =
1

C

N∑
i=1

T∑
t=1

| ∂w(It, Ii,t)
∂xj

|, (50)

figure rank the variable importance of characteristics in
the two models. The sum of all sensitivities is normalized
to one. Results in tow models are similar, which show the
robustness of our pricing strategy.

So far we have analyzed predictability of individual re-
turns. Then we compare forecasting performance of ma-
chine learning methods for aggregate portfolio returns.
There are a number of benefits to make the analysis on

portfolio level. First, portfolio forecasts provide an ad-
ditional indirect evaluation of my model and its robust-
ness. Second, aggregate portfolios are more interesting
because they represent the risky-asset savings vehicles
most commonly held by investors. Third, the distribu-
tion of portfolio returns is sensitive to dependence among
stocks, which implies that a good stock-level prediction is
not guaranteed to produce accurate portfolio-level fore-
casts. Bottom-up portfolio forecasts allow us to evaluate
a model’s ability to transport its asset predictions. Fi-
nally, the portfolio results can be seen as another out-
of-sample performance since the optimization procedure
doer not directly account for portfolio’s performance.

We build bottom-up forecasts by aggregating individ-
ual stock return predictions into portfolios. Given the
weight of stock i in portfolio p, denoted wp

i,t and given a
model-based out-of-sample forecast for stock i, denoted
ˆri,t+1, I construct the portfolio return forecast as

ˆrpt+1 =

n∑
i=1

wp
i,t × ˆri,t+1. (51)

We divide all stocks into ten percentiles according to
their predictive monthly returns and construct portfolios.
Then We calculate the cumulative excess return of each
portfolio. It is clear that the highest and lowest deciles
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separate in both models. Then we plot the real cumula-
tive excess returns of this investment strategy compare
them with the predicted results. We find the prediction
is consistent with the reality, which implies both models
have good performance.

V. CONCLUSION

This paper uses machine learning and deep learning
methods to price China’s A-share stock market. Tradi-
tional methods including OLS, Lasso and Random For-
est, have poor performance in predicting the excess re-
turns and suffer from over-fitting. This phenomenon
motivates me to find the correct pricing kernel for the
stochastic discount factor. Taking China’s stock market’s

speciality into consideration, we need a pricing model
that can describe ’Chinese Characteristics’, which means
that the market is full of myopic investors and noise
traders. We construct a generative adversarial network
and use minimum volatility as moment conditions. This
optimization condition can reflect Chinese government’s
active intervene in capital market to maintain financial
stability. Compared with traditional models and the
GAN model that minimizes the largest pricing error, our
model has higher R2 and can obtain higher Sharpe Ra-
tio. This means a correct pricing model for Chinese stock
market should include government’s behaviour that has
effects on stock returns both directly and indirectly. Ad-
ditionally, We construct deciled portfolios and predict
the long-term excess returns and I find the predictive re-
sults are consistent with the reality.
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Appendix A: Firm-Specific Characteristics

• Total Assets(AT) This variable measures the
size of a firm.

• Book-to-Market Ratio(BEME) Firms with
higher book-to-market ratio are likely to have
higher returns. Usually they have some troubles
and investors feel pessimistic about their perspec-
tive.

• Asset Turnover(ATO) This variable reflects
efficiency of the use of assets.

• Beta(β) Beta measures the amount of risk. Un-
der the setting of CAPM, I use time-series regres-
sion of each stock to calculate value of Beta.

• Current-to-Asset Ratio(C) This variable
measures liquidity.

• Capital Density(D2A) This variable is the
sum of depreciation and amortization per period

18



over total assets. It is a measure for cost. A lower
D2A means higher returns.

• Unused Rate(UR) This variable is the sum of
the difference of fixed assets and the difference of
inventory over total assets. It measures the extent
to which facilities are unused.

• Price-to-Earnings Ratio(P2E) This variable
measures whether the price of a stock is overesti-
mated. If the ratio is high then there is a large
possibility that there exists a bubble.

• Fixed Cost-Revenue Ratio This variable
measures a firm’s ability for profit.

• Cash Flow-Face Value Ratio(CF) This vari-
able measure a firm’s ability to bring returns to
shareholders.

• Idiosyncratic Rate Idiosyncratic is defined as
the residual of regression.

• Inventory Investment is the growth rate of cap-
ital.

• Leverage Ratio Leverage is total liabilities over
total assets. It is an index measuring a firm’s ability
to pay for debts.

• Lag Market Equity This variable is a measure
for history information.

• Turnover This measure stock market activity.

• Net Operating Assets This variable reflects
the fraction of assets using for main business.

• Growth of Operating Assets This measures
potential for profit.

• Operating Leverage Its definition is the cost
of main business over total assets. It is a fraction
contrast to NOA.

• Marginal Cost of Price Its definition is oper-
ating revenue minus cost over operating revenue.

• Marginal Price Its definition is operating rev-
enue minus depreciation over operating revenue.

• Profit Rate A firm’s total profit over book
value. This variable measures a firm’s ability of
earning profits for its shareholders.

• Return of Total Assets(ROA) Its definition
is revenue over last year’s total assets.

• Momentum Its definition is cumulative returns
from last 12 months to last 2 months.

• Long-Term Turnover Its definition is cumula-
tive returns from last 36 months to last 12 months.
Appendix B: Macroeconomics Variables

• Purchase Price Index of Industrial Products
This variable measure the relative cost of industry.

• Producer Price Index(PPI) This index ref-
lesscts the potential trend of price change in a cer-
tain area.

• Consumer Price Index(CPI) This index re-
flects price of common goods and inflation.

• Capital Price Index This variable measures
the price of means of production.

• Growth Rate of Investment for Real Estate
Development This variable reflects prosperity
of real estate market. Real estate market is highly
correlated to economic cycle and it is seen as an
indicator for macroeconomic.

• Loan from Financial Institution This vari-
able reflects information of financial market.

• Short-Term Loan from Financial Institution
This variable indicates economic status.

19


