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We use cross-sectional data from the 2014 American Community Survey to estimate the heteroge-
neous treatment effects of expanding Medicaid on health insurance coverage. In doing so, we provide
robust evidence which can help policymakers target future Medicaid policies towards particularly
responsive individuals. Medicaid expansions were optional by state, allowing us to identify treat-
ment effects by comparing expansion and non-expansion states. We then estimate heterogeneous
treatment effects using a non-parametric machine learning algorithm called a causal forest, which
offers several advantages over prior methods in the literature. Most notably, it provides a systematic
means to discover, from the data, which variables are most relevant for modelling heterogeneity. We
find strong evidence of heterogeneity in our estimated treatment effects. Furthermore, we find that
individuals with the largest treatment effects were typically aged 25-34; had a high school diploma
as their highest level of education; spoke a language other than English at home; and/or were in
private for-profit employment.

I. INTRODUCTION

As of 2020, 31.6 million individuals in the US do
not have health insurance(Cha and Cohen, 2022). This
comprises 9.7% of the US population(Cha and Cohen,
2022), which is substantially higher than uninsurance
rates in other developed countries(Papanicolas, and Jha,
2018). Lack of health insurance is linked to negative out-
comes including worse overall health and higher mortality
rates(Coleman, 2006).

The US government has made extensive efforts to
tackle this problem, particularly through the 2014 im-
plementation of the Affordable Care Act (ACA). One
key provision of the ACA aimed to significantly expand
eligibility for Medicaid, a public health insurance pro-
gramme, in order to provide affordable insurance to al-
most all adults under age 65 with incomes below 138%
of the federal poverty line(Garthwaite, Graves, Gross,
Karaca, Marone and Notowidigdo, 2019). However, these
Medicaid expansions were made optional for states, and
only 26 states actually implemented the expansions in
2014. This suggests an observational study using cross-
sectional data from 2014 to compare expansion and non-
expansion states, thereby allowing us to identify the
treatment effect of Medicaid expansions on the propor-
tion of individuals covered by health insurance 1.

We are further interested in estimating heterogeneity
in this treatment effect. That is, we seek to model the
treatment effect on individuals as a function of their co-
variates. By doing so, we can identify which individuals
experienced the largest treatment effects in response to
the Medicaid expansions. Such information would allow
future Medicaid policies to be targeted towards partic-
ularly responsive individuals. This is especially relevant
in settings where policymakers have limited financial re-
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1 We subsequently refer to this outcome variable as ’insurance cov-
erage’ for brevity.

sources, and therefore can only afford to expand Medicaid
to a limited number of individuals.

A key methodological contribution of this paper is to
estimate heterogeneous treatment effects using a machine
learning technique called a causal forest. This method
has not been applied to study the ACA Medicaid ex-
pansions before, and it offers important advantages over
more traditional approaches in the prior literature.

Notably, causal forests provide a flexible and system-
atic way to discover, based on the data, which variables
are most relevant for modelling heterogeneity. In more
traditional methods, heterogeneity can only be estimated
over a small number of pre-specified variables, meaning
researchers might miss important variables that they did
not specify at the outset of their study. Causal forests
also allow for non-parametric estimation of the treatment
effects, meaning researchers can be agnostic regarding
functional form and let the algorithm determine this from
the data.
We use a large dataset from the 2014 American Com-

munity Survey, which contains information on over 3 mil-
lion Americans nationwide. In addition to document-
ing the insurance status of each surveyed individual, it
records a rich set of individual socioeconomic, demo-
graphic and health-related covariates. We also include
several state-level controls in our study to minimise any
confounding.
We find strong evidence in favour of heterogeneity in

our estimated treatment effects. Furthermore, we find
that individuals with the largest treatment effects were
typically aged 25-34; had a high school diploma as their
highest level of education; spoke a language other than
English at home; and/or were in private for-profit em-
ployment. This last variable was not generally noted in
prior studies, and its discovery demonstrates how novel
machine learning approaches can bring new evidence to
the existing literature.
The remainder of the paper is structured as follows.

Section II provides an overview of Medicaid and the
ACA; it then discusses the policy relevance of estimat-
ing heterogeneous treatment effects, considers the ben-
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efits of a machine learning approach, and ends with a
brief review of the related literature. Section III presents
our methodology, including a detailed description of the
causal forest algorithm. Section IV details our identifi-
cation strategy and dataset. Section V presents our key
results, and Section VI concludes.

BACKGROUND, MOTIVATION ANDII.
RELATED LITERATURE

A. Overview of medicaid and the affordable care
act

Medicaid is a public health insurance programme in
the US, which is jointly funded by states and the fed-
eral government. It covers healthcare costs for certain
individuals with limited income or resources. Medicaid
is administered by states, subject to federal require-
ments(Center for Medicaid and CHIP Services, 2022).
Historically, Medicaid-eligible individuals had to have

low income and belong to a certain category – such
as being a disabled individual, a parent, a pregnant
woman, or a child(Gruber and Sommers, 2019). How-
ever, eligibility was substantially altered by the Afford-
able Care Act (ACA). This federal statute introduced a
far-ranging package of healthcare reforms; it was signed
into law in 2010 and mostly implemented in 2014. A
key goal of the ACA was to maximise insurance cover-
age(Courtemanche, Marton, Ukert, Yelowitz and Zapata,
2017).

One major provision of the ACA was intended to
largely eliminate categorical criteria for Medicaid eligi-
bility(Garthwaite, Graves, Gross, Karaca, Marone and
Notowidigdo, 2019), by extending the programme to in-
clude nearly all adults under age 65 with incomes below
138% of the federal poverty line. However, a Supreme
Court ruling in 2012 made this Medicaid expansion op-
tional for states(Courtemanche, Marton, Ukert, Yelowitz
and Zapata, 2017). Indeed, 24 states opted out during
the initial implementation of the ACA in 2014. States
which did not expand Medicaid generally retained their
historic eligibility criteria, including categorical require-
ments.

This institutional setting allows us to identify the
treatment effect of Medicaid expansions on insurance
coverage, by comparing outcomes in expansion and non-
expansion states2.

B. Policy insights from estimating heterogeneous
treatment effects

In this study, we will estimate heterogeneity in the
treatment effects of Medicaid expansions on insurance

2 Section IVA details our identification strategy.

coverage. That is, we model the treatment effects on
individuals as a function of their covariates, including
factors such as age, gender, or race. This allows us to
find which subgroups3 of the population experienced the
largest treatment effects in response to expanding Medi-
caid. Below, we discuss two scenarios where policymak-
ers could use this information to target future Medicaid
policies to particularly responsive subgroups.
Firstly, several states opted out of the ACA Medicaid

expansions in 2014 on the grounds that such expansions
would be too expensive to implement. Some of these
states, such as Georgia, have subsequently expressed in-
terest in much smaller-scale Medicaid expansions, target-
ing specific subsets of the population(Hellmann, 2019).
By focusing on particularly responsive subgroups, poli-
cymakers can maximise coverage gains, while keeping the
expansions small-scale enough to minimise financial cost.
Secondly, states may have to disenrol individuals from

Medicaid after the end of the Public Health Emergency
(PHE) that was first declared in 2020 due to Covid-19.
Federal funding for Medicaid has been enhanced for the
duration of the PHE only, conditional on a ‘continu-
ous coverage requirement’: anyone enrolled in Medicaid
after March 18 2020 cannot be disenrolled during the
PHE(Alker and Brooks, 2022).
The PHE is currently anticipated to end around mid-

to-late 2022. Subsequently, states might scale back their
Medicaid programmes due to reduced federal funding.
Furthermore, the continuous coverage requirement will
no longer apply, so states will reassess whether individ-
uals are still eligible for Medicaid(Corlette and Kona,
2022). For both reasons, states may have to disenrol
individuals from Medicaid(Buettgens and Green, 2022).
However, policymakers may wish to avoid disenrolling
particularly responsive subgroups. Ensuring this will re-
quire robust evidence on treatment effect heterogeneity.

C. Estimating heterogeneous treatment effects
with machine learning

We estimate heterogeneous treatment effects using ma-
chine learning, which offers key advantages over more
traditional approaches. One such advantage is that ma-
chine learning algorithms can estimate treatment effects
non-parametrically, allowing the researcher to be agnos-
tic regarding functional form.
Another advantage is that machine learning algorithms

permit the researcher to be agnostic pre-analysis about
which variables are most relevant for modelling treatment
effect heterogeneity. Instead, the algorithm will automat-

3 A subgroup is a subset of the population, typically defined with
reference to individual covariate values. For instance, if age is an
individual covariate, then one potential subgroup could be ‘all
individuals in the population aged below 30’.
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ically discover such variables during the analysis phase,
based on the data.

Without the use of machine learning, analysing sub-
groups to find heterogeneous treatment effects can be
problematic. One extreme approach is to continuously
run tests to compare arbitrarily selected subgroups, un-
til finding statistically significant evidence for treatment
effect heterogeneity over two (or more) subgroups. How-
ever, with every statistical test there is always a small
probability of obtaining a false positive result (aka Type
I error) – that is, a result which incorrectly indicates the
presence of a heterogeneous treatment effect when none
actually exists. If a large number of tests are performed
in an unprincipled manner, there is a high chance of ob-
taining spurious false positive results(Brookes, Whitley,
Peters, Mulheran, Egger and Davey, 2001).
To avoid this issue, a commonly recommended ap-

proach is to pre-specify subgroups of interest before car-
rying out the analysis, and then only examine those sub-
groups in the analysis stage. However, this approach is
also limited; since we only perform tests on pre-specified
subgroups, we may fail to discover variables which turn
out to be unexpectedly relevant for modelling heterogene-
ity, but are not already specified pre-analysis(Brookes,
Whitley, Peters, Mulheran, Egger and Davey, 2001).
Both problems can be avoided through machine learn-

ing techniques. We use a particular machine learning al-
gorithm called a causal forest to estimate heterogeneous
treatment effects(Athey, Tibshirani and Wager, 2019). A
key advantage of causal forests is that their estimates are
consistent and asymptotically Gaussian under certain as-
sumptions4; this also allows for the construction of valid
confidence intervals(Wager and Athey, 2018).

D. Related literature

Prior studies in the literature broadly find that the
ACA Medicaid expansions led to a significant average
increase in insurance coverage(Frean, Gruber and Som-
mers, 2017; Miller and Wherry, 2017). Courtemanche,
Marton, Ukert, Yelowitz and Zapata (2017) estimate that
the average treatment effect over the whole population
was 2.9 percentage points.

In addition, many studies consider treatment effects
over particular subgroups, or try to assess heterogeneity
in the treatment effect associated with certain covariates.
We summarise some important results below.

Several studies(Kaestner, Garrett, Chen, Gangopad-
hyaya and Fleming, 2017; Wehby and Lyu, 2018) focus
their attention on adults with low education, finding that
Medicaid expansions led to substantial coverage gains in
this subgroup.

Guth, Artiga and Pham (2020) conduct a review of
65 studies, and broadly find evidence that the Medicaid

4 See Section III C 4.

expansions narrowed (but did not eliminate) racial dis-
parities in insurance coverage. This suggests that mi-
norities responded more strongly to the expansions than
non-minorities.
Several studies examine heterogeneity in the treatment

effect by age, but s6s appear mixed. Courtemanche, Mar-
ton, Ukert, Yelowitz and Zapata (2017) and Wehby and
Lyu (2018) find that coverage gains were largest for those
aged 18-34; however, Frean, Gruber and Sommers (2017)
and Dworsky, M. and Eibner, C. (2016) instead find that
older adults were more responsive.
There are also some limitations to the prior litera-

ture, which we address in this study. Firstly, many prior
studies that estimate heterogeneous treatment effects,
e.g. Courtemanche, Marton, Ukert, Yelowitz and Zapata
(2017), have limited discussion of why such information
would be relevant to policymakers. The present study
addresses this shortcoming by explicitly linking estimates
of treatment effect heterogeneity to their implications for
policy targeting.
Secondly, we are not aware of any prior studies using

causal forests to estimate heterogeneous treatment effects
of the ACA Medicaid expansions on insurance coverage.
Causal forests possess several advantages over more tra-
ditional approaches, as described in Section IIC, and our
use of this novel methodology is a key contribution of this
study. Indeed, our causal forest discovered that private
for-profit employment was a highly relevant covariate for
modelling heterogeneity, as will be discussed in Section
VF. This variable was not generally mentioned in prior
studies; thus, our novel methodology contributes new ev-
idence to the existing literature.

III. METHODOLOGY

Section IIIA formally defines treatment effects through
the potential outcomes framework, and Section III B dis-
cusses our estimating equation. Section III C gives a de-
tailed overview of causal forests, and describes how they
estimate heterogeneous treatment effects. Finally, Sec-
tion IIID discusses estimation of average treatment ef-
fects.

A. Potential outcomes framework

Let us consider a setup with N observations indexed
i = 1, . . . , N . Each observation i is associated with co-
variates Xi, outcome Yi and treatment indicator Wi. Wi

is a dummy variable where Wi = 1 if i has received the
treatment, and Wi = 0 if not.
Under the Neyman-Rubin potential outcomes frame-

work(Rubin, 2005), denote by Yi(1) the potential out-
come for i had they received the treatment, and denote
by Yi(0) the potential outcome for i had they not received
the treatment. Notice that this relies on a Stable Unit
Treatment Value Assumption (SUTVA), namely that the

22



potential outcomes for a given unit are only dependent
on its own treatment assignment, and not on how the
treatment is assigned to other units.

The causal effect of the treatment on each unit then is
defined as Yi(1) − Yi(0). However, the observed outcome
for a unit is Yi = Yi(0)+Wi[Yi(1)−Yi(0)], that is, we only
ever observe one of the potential outcomes. This is the
fundamental problem of causal inference – since we do
not observe both potential outcomes, we cannot identify
individual-level treatment effects(Holland, 1986).

Instead, we consider the following average estimands.
First, the Average Treatment Effect (ATE):

E[Yi(1) − Yi(0)], (1)

By default, we will refer to the ATE over the whole
population as simply ‘the ATE’. However, we could also
compute an average treatment effect over all the individ-
uals belonging to a particular subgroup. We will distin-
guish this latter concept by referring to it as a ‘subgroup
ATE’ throughout.

A second key estimand is the Conditional Average
Treatment Effect (CATE):

E[Yi(1) − Yi(0)|Xi = x], (2)

which computes the average treatment effect specifically
for individuals with covariates x. The CATE is of key in-
terest, since it allows us to estimate heterogeneous treat-
ment effects across individuals with different covariates.

To identify these average estimands, we impose two
further assumptions(Weeks and Christiansen, 2020). The
first is unconfoundedness, i.e. that potential outcomes
Yi(1) and Yi(0) are independent of the treatment status
Wi after conditioning on Xi:

Yi(0), Yi(1) ⊥Wi|Xi, (3)

The second assumption is overlap, which requires that
each observation has some probability of being treated
and of not being treated. Formally, for all i,

0 < Pr(Wi = 1|Xi = x) < 1 ∀x. (4)

To illustrate why overlap is required for identifica-
tion, consider an example from Weeks (2022) where we
have a single categorical covariate Xi taking three val-
ues {1, 2, 3}. Suppose that all three values of Xi have
treated observations, but only Xi = 1 and Xi = 3 have
untreated observations. This violates overlap for Xi = 2.
Subsequently, treated observations with Xi = 2 do not
have good counterfactuals in the control group, meaning
we cannot identify the treatment effect when Xi = 2.

B. Estimating equation, orthogonalisation and the
R-learner

We focus on the CATE, since we are interested in esti-
mating heterogeneous treatment effects5. In what follows
we will notate the CATE as:

τ(x) = E[Yi(1) − Yi(0)|Xi = x], (5)

We then seek to estimate the following equation:

Yi = f(Xi) + τ(Xi)Wi + ϵi, (6)

where f(Xi) is the expected outcome in the absence of
treatment. Eq. (6) will ultimately be estimated non-
parametrically by causal forests, hence we do not need
to impose strong functional form assumptions on f(Xi)
and τ(Xi). This is a key advantage of a machine learning
approach, as noted in Section IIC.
Before applying the causal forest algorithm, a crucial

intermediate step is to transform the estimating Eq. (6)
via ‘orthogonalisation’, following (Robinson, 1988). De-
fine the marginal outcome m(x) = E(Yi|Xi = x), and
notate the propensity score e(x) = E(Wi|Xi = x) =
Pr(Wi = 1|Xi = x). We can then rewrite the orig-
inal estimating Eq. (6) in the following orthogonalised
form(Kreif, Diaz-Ordaz, Moreno-Serra, Mirelman, Hi-
dayat and Suhrcke, 2022):

Yi −m(Xi) = τ(Xi)[Wi − e(Xi)] + ϵi, (7)

This is similar in spirit to the Frisch-Waugh-Lovell
theorem, in that we have ‘partialled out’ the effect of
Xi on Yi and Wi. The advantage of Eq. (7) is that
the causal forest can purely focus on modelling τ(Xi),
while estimation of e(x) and m(x) can be carried out
separately by any off-the-shelf predictive machine learn-
ing algorithm(Nie and Wager, 2021)6. By contrast, had
the causal forest estimated the original Eq. (6), it would
have ‘wasted’ some computational resources on modelling
f(Xi) as well as τ(Xi); this would then reduce accuracy
in the final CATE estimates(GRF Labs, 2022).

Nie and Wager (2021) refer to this orthogonalised ap-
proach as the ’R-learner’. They note that τ(.) can be
estimated by minimising the expected squared-error loss
function for the orthogonalised Eq. (7):

τ̂(x) =argminτ

{
E

([
(Yi −m(Xi))−

(Wi − e(Xi))τ(Xi)
]2

| Xi = x

)}
∀x,

(8)

5 Furthermore, once we have estimated the CATE we can also use
this to estimate ATEs. See Section IIID.

6 Our implementation of causal forests estimates e(x) and m(x)
separately using an ‘honest’ version of a random forest. Ran-
dom forests are defined in Section III C 1 and honesty in Section
III C 2.
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If we take the first-order condition of Eq. (8) and rear-
range it, we can then obtain the associated local moment
condition:

E
(
(Yi −m(Xi))(Wi − e(Xi))−

τ(Xi)(Wi − e(Xi))
2 |Xi = x

)
= 0 ∀x.

(9)

We term Eq. (9) the ’R-learner moment condition’;
note that it can be used to identify the CATE τ(.). This
means the causal forest algorithm can estimate the CATE
based on the R-learner moment condition. We will detail
this in Sections III C 3 and III C 4.

C. GRF and causal forests

This section is structured into four parts, which build
step-by-step towards a description of causal forests. To
lay some groundwork, Section III C 1 gives an introduc-
tion to regression trees and random forests, and Section
III C 2 discusses honest estimation. Section III C 3 then
gives an overview of the Generalised Random Forest al-
gorithm (GRF), illustrating similarities and differences
with standard random forests. Finally, Section III C 4
discusses how causal forests can be implemented as a
special case of GRF.

1. Regression trees and random forests

Consider a regression problem where we seek to predict
an outcome Yi given covariates Xi. In other words, we
wish to estimate E(Yi|Xi). We can achieve this through
an algorithm called a regression tree.

In general, a tree is a partitioning of the covariate
space7 into subregions called leaves(Athey and Imbens,
2016). Consider a simple example of a tree from Hastie,
Tibshirani and Friedman (2017). Here we have two co-
variates, X1 and X2, and the tree partitions the covariate
space into 5 leaves as shown in Fig. 1.
The tree is constructed using a ‘training sample’; this

is a sample of data points which are called ‘training ex-
amples’. Each leaf R is then associated with a prediction
ȲR, which is the average outcome of the training exam-
ples falling into that leaf.

After constructing the tree, we can get a prediction for
a new data point which was not in the original training
sample. We refer to this new data point as a ‘test point’,
and denote its covariates as x. To get a prediction for
x, we see which leaf x lands in and return the prediction
associated with that leaf.

The tree partitioning is constructed by a process called
recursive binary splitting. To begin with, we divide the

7 The covariate space is the set of all possible values that could be
taken by the covariates.

whole covariate space into two subregions, based on a
particular splitting variable and a split point for that
variable. For instance, we might take X1 as the splitting
variable, and t1 as a split point. Then we define two
subregions, one containing observations with X1 ≤ t1,
and another containing observations with X1 > t1.
The algorithm chooses the split that minimises a cer-

tain target criterion called the splitting criterion. Here,
the splitting criterion is the mean squared prediction
error of the new tree that we obtain after making the
split(Weeks, 2022).
The same binary splitting procedure is then recursively

applied to our two subregions to obtain four subregions,
and so on. Splitting continues until further splits would
cause the resulting subregions to be smaller than some
pre-specified minimum node size. The splitting proce-
dure is ‘greedy’ in that it simply makes the best available
split at each step, rather than selecting splits that might
lead to better trees in a future step.
The sequence of splits for our example tree is shown

in Fig. 1. The root node of a tree is the node where the
first split is made – in Fig. 1, this would be the node
where we split at X1 = t1. The depth of a given node
is then defined as the number of edges linking that node
back to the root node. For instance, the node where we
split at X2 = t4 would have a depth of 2.
An advantage of a single tree is its interpretability,

since we can easily see the hierarchical structure of splits
that were selected to partition the covariate space. This
hierarchical structure also captures dependencies and in-
teractions between variables. For instance, we can see in
Fig. 1 that X2 = t2 is only a relevant split point for data
points that also have X1 ≤ t1, i.e. data points that went
to the left-hand side of the tree after the first split.

A disadvantage of using single regression trees is that
they typically exhibit high variance. To improve stabil-
ity in the estimates, we can instead use a ‘forest-based’
method where we draw B random subsamples from the
data8, and grow a different tree on each subsample.
Then, to get a prediction for a test point x, we start by
pushing x down each tree. For the bth tree, we see which
leaf node x lands in and obtain an associated prediction
µ̂b. The final forest prediction simply averages over all

the individual tree predictions, so µ̂ =
B∑
b=1

µ̂b(Tay, 2020).

One issue with a forest-based approach is that if one
of the covariates is a strong predictor, almost all the in-
dividual trees will select this covariate as the first split-
ting variable. This makes the trees highly correlated,
in which case averaging them together does not lead
to a large stability improvement(Weeks, 2022). Hence,

8 In theory these subsamples could be drawn either with or with-
out replacement. We implemented our estimation procedure us-
ing the R package grf, which draws the samples without replace-
ment(GRF Labs, 2022)
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FIG. 1. Left panel: A partitioning of the covariate space. Right panel: An example of a tree. Reproduced from Hastie,
Tibshirani and Friedman (2017), p.306, Figure 9.2.

Breiman (2001) proposes a modified forest-based proce-
dure known as random forests, where at each splitting
point a random subset of variables is made available to
split on. This aims to reduce the correlation between
trees as much as possible.

2. Honest estimation

Standard random forests use the same training data to
construct partitions and to generate the estimates asso-
ciated with each leaf. However, note that the algorithm
will typically group data points with spuriously extreme
Yi into the same leaves(Athey and Imbens, 2016). The es-
timates generated for these leaves will then exhibit bias,
due to them being computed over data points which were
selected on the basis of having extreme outcomes.

To avoid this source of bias and ensure consistent es-
timates, we want to use separate data for constructing
partitions and generating leaf estimates. We therefore
impose a condition called ‘honesty’: for every training
example i, the outcome Yi is either used to place the
splits, or to generate leaf estimates, but not both(Wager
and Athey, 2018).

To implement honest estimation in practice, we ran-
domly divide the training sample in half and only use
the first half to partition the covariate space. After this
is completed, the first half of the training sample is dis-
carded; the second half is then used to populate the leaves
and subsequently generate the leaf estimates(GRF Labs,
2022).

3. Overview of GRF

We now turn to an overview of the Generalised Ran-
dom Forest (GRF) algorithm9, contrasting it with the
standard random forest algorithm described in the pre-
vious section. Understanding GRF is of key importance,
since we will ultimately implement causal forests as a
special case of GRF (see Section III C 4).
Consider a setup where we have N training examples

indexed i = 1, . . . , N . Furthermore, let each training
example i be associated with some observable quantity
Oi along with covariates Xi. In the case of a simple
prediction problem, as with random forests, Oi simply
comprises the outcome variable i.e. Oi = {Yi}. If instead
we are interested in estimating a treatment effect, Oi
would comprise the outcome and treatment assignment
variables, i.e. Oi = {Yi,Wi}.
Now suppose we are interested in a parameter θ(x).

The GRF algorithm allows us to estimate θ(.) at any
given point Xi = x, so long as θ(.) is identified by a lo-
cal moment condition10. To introduce some notation, we
represent the local moment condition as(Athey, Tibshi-
rani and Wager, 2019):

E(ψθ(x)(Oi)|Xi = x) = 0 ∀x, (10)

To estimate θ(x) empirically for a given x, we convert
Eq. (10) into a weighted sample moment and minimise
this with respect to θ(x). The weights are constructed

9 This overview draws extensively on Athey, Tibshirani and Wager
(2019).

10 In the context of our study, the parameter of interest is the
CATE, and it is identified by the R-learner moment condition
Eq. (9). See Section III C 4.
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such that training examples with covariates similar to x
are assigned greater weight, because they are more infor-
mative about the true x.
Let us denote the weight on each training example Xi

as αi(x). The minimisation problem can then be ex-
pressed as(Athey, Tibshirani and Wager, 2019):

θ̂(x) ∈ argminθ(x)

{∥∥∥∥∥
N∑
i=1

αi(x)ψθ(x)(Oi)

∥∥∥∥∥
2

}
, (11)

Solving Eq. (11) yields the GRF estimate for θ(x).
Note that in the special case that this expression has
one unique root, we can equivalently estimate θ(x) by
just solving(Athey, Tibshirani and Wager, 2019):

N∑
i=1

αi(x)ψθ(x)(Oi) = 0, (12)

To calculate weights αi(x), we begin by growing B
trees indexed b = 1, . . . , B. In doing so, some core el-
ements of standard random forests are preserved: each
tree is grown on a random subsample of the data using
recursive binary splitting, and at each splitting point a
random subset of variables is made available to split on.
However, we do not use the same splitting criterion as
a standard random forest. Instead, the GRF splitting
criterion is designed such that, intuitively speaking, we
will ultimately increase heterogeneity in the estimates of
θ(x) as fast as possible11.
For each tree b, let Lb(x) denote the set of training

examples falling in the same leaf as x. Then the weights
αi(x) represent the frequency with which the i-th training
example lands in the same leaf as x, calculated across
all the trees. This can be represented as follows(Athey,
Tibshirani and Wager, 2019):

αbi(x) =
1({Xi ∈ Lb(x)})

|Lb(x)|
, αi(x) =

1

B

B∑
b=1

αbi(x).

(13)
This usage of trees to obtain weights, rather than a

set of estimates to be averaged together, is substantially
different in perspective to other standard forest-based al-
gorithms such as random forests.

There is only one special case where the two perspec-
tives are equivalent: this is in fact the scenario previously
discussed in Section III C 1, where we seek to predict an
outcome Yi given covariates Xi. Here, the weighting-
based GRF procedure is mathematically equivalent to
the averaging-over-predictions approach of a standard
random forest(Athey, Tibshirani and Wager, 2019).
However, unlike standard random forests, GRF can be

applied to a much broader range of tasks than a simple

11 For a technical description of the GRF splitting criterion see
Sections II B and IIC of Athey, Tibshirani and Wager (2019).

prediction problem: it can estimate any parameter iden-
tified by an appropriate local moment condition. In these
more general scenarios the weighting- and averaging-
based approaches are no longer equivalent, and it is the
weighting-approach which proves much more effective, as
stressed by Athey, Tibshirani and Wager (2019).
It is instructive to think of GRF as similar to an

adaptive nearest neighbour method, insofar as we seek
a weighted set of neighbours for test point x(Athey, Tib-
shirani and Wager, 2019). Importantly, with GRF we
allow the neighbourhood size to vary depending on how
the trees are constructed, especially since the leaf nodes
may potentially have different sizes. This is in contrast
to a classical k-nearest neighbours method, where the
neighbourhood size k is a pre-determined parameter.

4. Heterogeneous treatment effect estimation with causal
forests

Causal forests can be implemented as a special case
of GRF. To do so, we begin by rewriting the R-learner
moment condition Eq. (9) as:

E
(
(Yi −m(Xi))(Wi − e(Xi))− τ(Xi)(Wi − e(Xi))

2︸ ︷︷ ︸
ψτ

|Xi = x
)
= 0 ∀x,

(14)
Recall also that the GRF estimator could be obtained

by solving Eq. (12):

N∑
i=1

αi(x)ψθ(x)(Oi) = 0,

We take ψτ from Eq. (14) and plug this into Eq. (12),
by setting ψθ(x)(Oi) = ψτ . After rearranging, the GRF
estimate for the CATE can be written as(Athey and Wa-
ger, 2019):

τ̂(x) =

N∑
i=1

αi(x)(Yi − m̂(Xi))(Wi − ê(Xi))

N∑
i=1

αi(x)(Wi − ê(Xi))2
. (15)

As discussed in Section IIIA, the fundamental problem
of causal inference implies that individual-level treatment
effects cannot be identified. This poses difficulties in eval-
uating the performance of our CATE estimator Eq. (15)
since, unlike in predictive problems, the ‘ground truth’
of the causal effect is not observed(Athey and Imbens,
2016). In response, the literature has developed a se-
ries of theoretical results showing that causal forest esti-
mates are consistent and asymptotically Gaussian under
a certain set of assumptions. An important assumption
is that trees are honest in the sense defined in Section
III C 2(Athey, Tibshirani and Wager, 2019). We also re-
quire unconfoundedness Eq. (3) and overlap Eq. (4) to
hold(Wager and Athey, 2018).
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D. Average treatment effect estimation

The CATE is highly granular, since it is a function of
every single covariate. To get a higher-level perspective
on the treatment effects, it is often helpful to aggregate
the estimated CATEs to obtain estimates of the average
treatment effect (ATE) over selected subgroups or the
whole population.

Naively, we can accomplish this by simply averaging
the CATE estimates over all the observations in our pop-
ulation or subgroup of interest. However, a more accurate
estimate can be obtained by using a ’doubly-robust’ es-
timator(GRF Labs, 2022). This estimator is constructed
using estimates for the propensity score and conditional
mean outcomes. So long as either of these two estimates
are consistent, the doubly-robust estimator will then de-
liver a consistent estimate of the ATE. Another key ad-
vantage of the doubly-robust estimator is that it attains
the semiparametric efficiency bound(Farrell, 2015).
In this context, the doubly-robust estimator takes

the following form(Athey and Wager, 2019; GRF Labs,
2022)12:

τ̂ =
1

N

∑
i

{
τ̂(Xi)+

Wi − ê(Xi)

ê(Xi)(1− ê(Xi))
(Yi−µ̂(Xi,Wi))

}
,

(16)
where µ̂(Xi,Wi) is defined as:

µ̂(Xi,Wi) = m̂(Xi) + τ̂(Xi)[Wi − ê(Xi)], (17)

Note that µ̂(Xi,Wi) is an estimate of the conditional
mean outcome E(Yi|Xi,Wi). This can be seen by rear-
ranging the orthogonalised estimating Eq. (7) to obtain:

Yi = m(Xi) + τ(Xi)[Wi − e(Xi)]︸ ︷︷ ︸
µ(Xi,Wi)

+ϵi.

Note also that the doubly robust estimator is asymp-
totically Gaussian, allowing us to construct valid confi-
dence intervals(Wager, 2020).

IV. IDENTIFICATION STRATEGY AND DATA

A. Identification strategy

In the context of our study, we can rewrite the esti-
mating Eq. (6) as follows:

Yis = f(Xis) + τ(Xis)Wis + ϵis. (18)

where the indexes indicate individual i in state s. Yis,
the outcome variable, is a dummy which equals 1 if i has

12 We have omitted additional ‘cross-fitting’ notation for clarity of
exposition.

health insurance and 0 if not. Wis indicates the treat-
ment status, which equals 1 if state s has expanded Med-
icaid and 0 if not. Xis contains a set of individual- and
state-level covariates.
To ensure unconfoundedness, it is necessary to control

for any variables that might influence the treatment as-
signment Wis and also separately influence the outcome
variable Yis. Our identification strategy assumes that un-
confoundedness holds after controlling for the following
three state-level observables:

1. State political affiliation. The debate around the
ACA was highly partisan, with Democrats typically
supporting the ACA while Republicans opposed it.
Many Republican-led states therefore opted out of
the Medicaid expansion as part of their broader
opposition to the ACA as a whole.

State political affiliation may have also had a sep-
arate influence on individual insurance statuses.
Motivated by a conservative ideology of individual
responsibility, some Republican states have mod-
ified their Medicaid programs to feature increased
‘cost-sharing’(Baker and Hunt, 2016). This reduces
the proportion of healthcare costs covered by insur-
ance, thereby requiring individuals to fund more
healthcare expenses by themselves. Since insur-
ance programmes are less generous in Republican
states, fewer individuals in these states may be in-
centivised to enrol in them.

2. State expenditure per capita. States had to par-
tially fund Medicaid expansions, and several opted
out because they were unwilling to do so(Sommers
and Epstein, 2011). For instance, states may have
been averse to large state expenditures for political
or ideological reasons, or else they may have lacked
financial resources. Any of these factors should
also be associated with lower state expenditure per
capita.

In addition, lower state expenditure per capita may
have separately influenced individual insurance sta-
tuses. For instance, this may have meant fewer
state-sponsored advertisement campaigns to inform
individuals about insurance options, making indi-
viduals less likely to obtain insurance. Indeed,
Karaca-Mandic, Wilcock, Baum, Barry, Fowler,
Niederdeppe and Gollust (2010) find that state-
sponsored advertisements significantly increased
Medicaid enrolment in 2014.

3. State vs federal insurance exchanges. The ACA
established private insurance exchanges where in-
dividuals and small businesses could directly pur-
chase health insurance. States were given the op-
tion to run these exchanges themselves or else rely
on a federally-run exchange. Whether exchanges
were state- or federally-run may correlate with the
decision to opt out of Medicaid expansions, e.g.
states lacking interest or administrative capacity
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might have opted out of Medicaid expansions and
also relied on the federal exchange(Courtemanche,
Marton, Ukert, Yelowitz and Zapata, 2017).

Furthermore, the choice of state- or federally-
run exchanges separately influenced individual in-
surance enrolment(Terrizzi, Mathews-Schultz, and
Deegan, 2022). State-run exchanges may have op-
erated at reduced administrative burden, since they
could focus on the population of a single state,
rather than needing to function at a federal level.
This arguably increased the efficiency of state-run
exchanges in stimulating insurance uptake.

Note that apart from the Medicaid expansions and in-
surance exchanges, other major ACA provisions were im-
plemented at a federal level in 2014. As they took effect
uniformly in all states, they did not systematically cor-
relate with whether states expanded Medicaid or not,
minimising confounding concerns.

B. Data sources

Individual-level data was obtained from the 2014
American Community Survey (ACS). This is a yearly, na-
tionwide survey of over 3 million Americans. Within each
state a random sample of individuals is drawn; these sam-
ples are then put together to get the overall dataset(US
Census Bureau, 2015). Individuals selected to take part
in the survey are required to complete it by law, thus min-
imising any non-response bias(Wehby and Lyu, 2018).
The ACS records whether each individual has health

insurance or not, letting us construct the outcome vari-
able Yis. The ACS also records a rich set of socioe-
conomic, demographic and health-related covariates for
each individual; these were included in Xis. The full list
of individual-level covariates used in this study is pro-
vided in Table I.

Information on which states expanded Medicaid in
2014 was taken from Kaiser Family Foundation (2022).
All states that implemented Medicaid expansions in 2014
did so at the start of the year, except for Michigan (which
expanded Medicaid in April 2014) and New Hampshire
(which expanded Medicaid in August 2014)(Kaiser Fam-
ily Foundation, 2022). These two states could not be
cleanly classified as treated or untreated, since they ef-
fectively switched status partway through the year. We
therefore dropped them from the study. Reassuringly,
key results from other studies of the Medicaid expansions
are not significantly affected by keeping or dropping these
states(Courtemanche, Marton, Ukert, Yelowitz and Zap-
ata, 2017; Kaestner, Garrett, Chen, Gangopadhyaya and
Fleming, 2017).
Table II indicates our state control variables and their

data sources. These variables could not be obtained for
the District of Columbia (D.C.), which is a federal district
and not a state, so we dropped D.C. from our study.

One of our state controls was obtained by grouping
states into sextiles, based on their level of state expen-
diture per capita (see Table II for details). We did this
to ensure overlap, as each sextile contained a mixture
of treated and untreated states. By contrast, had we di-
rectly used state expenditure per capita as a control vari-
able, this would have violated overlap. For example, state
expenditure per capita was $6,790 for New York. But all
individuals in New York experienced the Medicaid expan-
sion, hence all observations with a state expenditure per
capita of $6,790 would have received the treatment and
none of these observations would have been untreated.
Along similar lines, we obtained another state control

by grouping states into terciles, based on the percent-
age of Republican individuals in each state. Again, this
was done to preserve overlap, since we could ensure that
each tercile contained a mixture of treated and untreated
states.
In theory our study could have used cross-sectional

data from a later year than 2014, thereby lengthening the
time window between the initial Medicaid expansions and
our observed dataset. This would have allowed us to cap-
ture longer-term treatment effects of the Medicaid expan-
sions. However, we believed that this would not provide
much extra information, since we expected insurance cov-
erage to respond quite quickly to Medicaid expansions.
Insurance enrolment is itself a reasonably fast process;
moreover, the Medicaid expansions were announced sev-
eral years prior to 2014, meaning that information about
the new policies should have already diffused through the
population in advance.
Furthermore, a risk is that over longer time windows,

it is much harder to measure and control for confounders.
For instance, categorising states by political affiliation is
very difficult over longer time periods: some states like
Pennsylvania and Louisiana had Republican state gov-
ernors in 2014, but switched to Democrat governors in
subsequent years(Ballotpedia, 2022), making it ambigu-
ous how to classify them overall.
These considerations motivated our choice of 2014

cross-sectional data for this study.

C. Adjustments for clustering

In our study, the treatment is assigned at the state-
level. As Abadie, Athey, Imbens and Wooldridge (2022)
argue, this means we should adjust our estimation pro-
cedure to account for state-level clustering. We therefore
made two key modifications to our causal forest algo-
rithm, following Athey and Wager (2019), which we dis-
cuss below.
In the standard causal forest algorithm, each tree is

grown on a random subsample of the training data. How-
ever, Athey and Wager (2019) propose a cluster-robust
modification to this sampling procedure which proceeds
in two stages: in the first stage a subsample of clusters is
randomly drawn, and then in the second stage individ-
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TABLE I. Individual-level covariates that were used in this study, from the 2014 American Community Survey(US Census
Bureau, 2007).

Continuous variables
Supplementary security income past 12 monthsAge

Wage or salary income past 12 monthsInterest, dividends, net rental income past 12 months
Total incomePublic assistance income past 12 months

All other income past 12 months (e.g. unemployment orRetirement income past 12 months
disability compensation)

Self-employment income past 12 months
Dummy variables. All variables below equal 1 if the individual has the characteristic of interest, and 0 if not

State government employeeMale
Federal government employeeSelf-care difficulty

Self-employed in own non-incorporated business,Hearing difficulty
practice or farm

Self-employed in own incorporated business, practice orVision difficulty
farm

Working without pay in family business or farmIndependent living difficulty
Civilian employed, at workAmbulatory difficulty

Civilian employed, with a job but not at work (e.g. dueVeteran-service connected disability
to parental leave or illness)

UnemployedCognitive difficulty
Not in labour forceAny type of disability

Works in managementMarried
Works in business-related industryWidowed

Works in financeDivorced
Works in computer- or maths-related industrySeparated

Works in engineeringNever married or under 15
Works in scienceGave birth to child in past 12 months

Community workerGrandparents living with grandchildren
Legal workerFemale with children aged under 6 years only

Educational workerFemale with children aged 6 to 17 years only
Entertainment workerFemale with children, some aged under 6 and others aged 6 to 17

Medical workerFemale with no children
Works in healthcare supportUS citizen by being born in the US

US citizen by being born in Puerto Rico, Guam, US Virgin Islands, or Northern
Marianas

Works in protective services (e.g. police or firefighters)

Works in food preparation and servingUS citizen by being born abroad of American parent(s)
Works in cleaningUS citizen by naturalization

Works in personal care and services (e.g. hairdressers,Not a citizen of the US
travel guides)

Speaks a language other than English at home Works in sales
Office administrator or assistantLived in same location one year ago

Works in farming, fishing or forestryDid not live in US or Puerto Rico one year ago
Works in constructionLived in Puerto Rico one year ago and now lives in US

Works in extraction (e.g. mining)Recently migrated from one part of the US to another
Works in repair, installation and maintenanceAmerican Indian or Alaska Native
Works in production (e.g. factory worker)Asian

Transportation workerBlack
On active duty in militaryNative Hawaiian

Used to be on active duty in military, but not nowOther Pacific Islander
Only on active duty for training in Reserves/NationalSome other race

Guard
Never served in militaryWhite

Has degree in science or engineeringEmployee of private for-profit company or individual
Employee of private not-for-profit, tax-exempt, or charitable organization

Local government employee
Categorical variables

Quarter of birth. Takes the following values:Highest level of education attainment. Takes the following values:

1: January - March1: No schooling completed
2: April - June2: Nursery school or preschool

3: July - September3: Kindergarten
4: October -December4: Grade 1

5: Grade 2
6: Grade 3
7: Grade 4
8: Grade 5
9: Grade 6
10: Grade 7
11: Grade 8
12: Grade 9
13: Grade 10
14: Grade 11

15: Grade 12 , but no high school diploma
16: High school diploma

17: GED or alternative credential
18: Some college, but less than 1 year

19: At least one year of college credit but no degree
20: Associate’s degree
21: Bachelor’s degree
22: Master’s degree

23: Professional degree beyond Bachelor’s degree
24: Doctorate degree
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TABLE II. Description and data sources for state controlsa.

Data sourceDescriptionState control
Whether insurance exchanges
were state- or federally-run

Dummy variable. Equals 1 if insurance exchange
was state-run and 0 if federally-run.

Giovannelli and Lucia (2015)

Sextiles by state expenditure
per capita

Categorical variable, taking values 1-6. Equals 1 if
state ranks in the bottom sextile by state

expenditure per capita, and so on, until equalling 6
if state ranks in top sextile by state expenditure per

capita.

Underlying data on state
expenditure per capita taken from

Ballotpedia (2022)

Terciles by percentage of
Republicans individuals in

state

Categorical variable, taking values 1-3. A measure
of state political affiliation. Equals 1 if state ranks
in the bottom tercile by percentage of Republicans,
and so on, until equalling 3 if state ranks in top

tercile by percentage of Republicans.

Underlying data on percentage of
Republicans in state taken from
the Gallup poll in Jones (2015).

Note that we classified individuals
as Republican if they reported
either strong identification or a
leaning towards the Republican

Party.
Whether state governor was

Republican
Dummy variable. A measure of state political

affiliation. Equals 1 if state governor was
Republican and 0 if not.

Ballotpedia (2022)

Whether upper house of state
legislature was majority

Republican

Dummy variable. A measure of state political
affiliation. Equals 1 if upper house of state

legislature was majority Republican and 0 if not.

Ballotpedia (2022)

Whether lower house of state
legislature was majority

Republican

Dummy variable. A measure of state political
affiliation. Equals 1 if lower house of state

legislature was majority Republican and 0 if not.

Ballotpedia (2022)

a Note: for the last two measures, a complication came from Nebraska, whose state legislature contains a single house. This house was
majority Republican in 2014. Since Nebraska’s single house combines the functions of what would normally be an upper and lower
house, we simply recorded Nebraska as having a majority-Republican upper and lower house.

ual data points are randomly sampled from each selected
cluster. This modification reduces overfitting, and en-
sures that standard errors and confidence intervals are
cluster-robust.

Athey and Wager (2019) also propose a cluster-robust
modification to the doubly-robust ATE estimator dis-
cussed in Section IIID. Under this modification, we first
compute a doubly-robust estimate of the ATE within
each cluster. Then an overall estimate of the ATE is
obtained by a simple averaging of all the within-cluster
ATE estimates.

V. RESULTS

We trained a causal forest with 500 trees and a mini-
mum node size of 5000, using the R package grf.

Firstly, we confirmed that the Medicaid expansions
had a positive overall effect on insurance coverage, with
an estimated ATE over the whole population of 2.41 per-
centage points. This estimate is comparable to earlier
studies, such as Courtemanche, Marton, Ukert, Yelowitz
and Zapata (2017).

In what follows, we delve into heterogeneity in our es-
timated treatment effects. Section VA visualises and
tests the overall extent of heterogeneity. Sections VB to
VF explore which variables were most relevant for mod-
elling heterogeneity, allowing us to characterise which

subgroups were most responsive to Medicaid expansions.

A. Testing for heterogeneity in the treatment
effects

Recall that we motivated our study by arguing that
evidence on the CATEs would facilitate targeting of fu-
ture Medicaid policy towards particularly responsive in-
dividuals. However, this argument is only compelling if
there is indeed heterogeneity in the treatment effects. If
instead all individuals responded identically, this would
no longer provide grounds to target one individual over
another.
Therefore, we are interested in visualising and test-

ing the extent of heterogeneity in our estimated CATEs.
To begin, we rank all individuals in the population by
the magnitude of their estimated CATEs, from largest to
smallest. In other words, the individual with the largest
estimated CATE receives the highest ranking, and so on.
Now consider a subgroup containing the individuals who
are ranked in the top tenth of the population by this
measure.
If there is strong heterogeneity in the treatment ef-

fect, we should expect the ATE over this subgroup to be
substantially larger than the ATE over the whole popu-
lation. We define the difference between these two ATEs
as the Targeting Operator Characteristic (TOC)(GRF

30



FIG. 2. The estimated TOC curve for our study. Dotted lines indicate 95% confidence intervals.

Labs, 2022).

More generally, we could compute the TOC for the
subgroup of individuals ranked in the top q of the popu-
lation, for any fraction q. This lets us plot a ‘TOC curve’,
with q on the x axis, and the associated TOC for each q
on the y axis. Fig. 2 shows the estimated TOC curve for
our study13.

Note that at q = 1, we are subtracting the ATE among
individuals in the the top 100% of the population from
the ATE over the whole population. Evidently both
terms are equivalent, so the TOC at q = 1 will equal
zero.

Furthermore, consider a case where there was no het-
erogeneity in the treatment effect, i.e. the CATE was the
same for all individuals. This would mean that the ATE
among individuals in the top q of the population would
equal the ATE of the whole population, for any value of
q. Therefore, the TOC would equal 0 everywhere. In
Fig. 2 we can see visually that the TOC curve is quite
far from zero over most of its range, suggesting our esti-
mated CATEs exhibit strong heterogeneity.

We can formally test for heterogeneity in our estimated
CATEs as follows. First, we estimate the average TOC
over all values of q. We then test if this estimate is sig-
nificantly above zero14; if so, this provides strong evi-
dence in favour of heterogeneity in our estimated treat-
ment effects. In our study this estimate was indeed sig-
nificantly above zero at all conventional levels15, strongly
supporting the presence of heterogeneity in our estimated
CATEs.

13 This was implemented using the R package grf. Following default
settings, the curve is plotted for q = (0.1, 0.2, . . . , 1.0).

14 The estimate is a sample average, so we can derive a central limit
theorem for it and construct hypothesis tests. See Yadlowsky,
Fleming, Shah, Brunskill and Wager (2021).

15 The point estimate was 0.02727, with a standard deviation of
0.005138, to 4 significant figures.

B. Variable importance

We focus next on assessing which variables were most
relevant for modelling heterogeneity; this is captured by
measures of ’variable importance’. Such information will
subsequently allow us to characterise the subgroups that
were most responsive to the Medicaid expansions.
A simple measure of variable importance for some

given covariate xj is as follows16: take a weighted sum
over the frequency with which xj is split on at each depth
of the causal forest, up to a maximum depth of 4. The ex-
act formula for this measure is(O’Neill and Weeks, 2019):

importance(xj) =

4∑
k=1

[ ∑
all trees

Nxj∑
all trees

Ntotal

]
k−2

4∑
k=1

k−2

. (19)

where k−2 is the weight for depth level k, Nxj
is num-

ber of splits on xj at depth k, Ntotal is total number of
splits at depth k. A high value of importance(xj) would
indicate that xj was very relevant for modelling hetero-
geneity, since a high proportion of trees chose to split on
it.
One drawback of measure Eq. (19) is that it does not

capture dependencies and interactions between variables.
Such information can be seen easily from the hierarchical
structure of single trees, as discussed in Section III C 1.
However, this information is lost when using many trees
together in causal forests. This is an important limita-
tion of variable importance measures and of forest-based
methods more broadly.
Another issue with measure Eq. (19) is that it ex-

hibits some bias towards continuous variables or categor-
ical variables with high cardinality. This is because such
variables have more potential splitting points, reflecting
the fact that they embody more information(O’Neill and

16 This is the default variable importance measure in the R package
grf.
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TABLE III. Top 5 covariates, by variable importance.

Ranking
Individual level covariates onlyAll covariates

Variable
importance

Variable
Variable

importance
Variable

Age0.1610Age0.16101
Total income0.1129Sextiles by state expenditure per capita0.11812

Whether in private for-profit employment0.0698Total income0.11293
Highest level of educational attainment0.0543Whether in private for-profit employment0.06984

0.0530Highest level of educational attainment0.05435
Whether speaking a language
other than English at home

Weeks, 2019). Altmann, Toloşi, Sander and Lengauer
(2010) instead propose a bias-corrected ’permutation im-
portance’ measure – however, this involves fitting causal
forests hundreds or thousands of times, which we lacked
the computational resources to implement. Reassuringly,
O’Neill and Weeks (2019) find that both measures give a
similar ranking of variable importance.

The five most important covariates from our causal for-
est are reported in Table III. One of our state controls,
sextiles by state expenditure per capita, was among these
top five; more broadly, all our state controls had fairly
high importance. This is reassuring since it means the al-
gorithm made strong use of the state controls, improving
robustness to confounding. However, we are otherwise
most interested in which individual -level covariates were
strongly associated with treatment effect heterogeneity;
we ultimately want to target Medicaid policies to dif-
ferent individuals, not different states. To this end, we
also enumerate the five most important individual -level
covariates; again, see Table III.

Notice that total income had high variable importance.
This is fairly self-explanatory since, by design, the Med-
icaid expansions were targeted to those below a certain
income threshold (138% of the federal poverty line). Re-
gardless, this result is still useful as a sanity check – had
the causal forest failed to pick up on income, we might
be worried that it was not properly modelling treatment
effect heterogeneity.

In the following sections, we consider the four other in-
dividual covariates with high variable importance: age,
educational attainment, speaking a non-English language
at home, and private for-profit employment. Overall, our
findings suggest that particularly responsive individuals
were typically aged 25-34; had a high school diploma as
their highest level of educational attainment; spoke a lan-
guage other than English at home, and/or were in private
for-profit employment.

C. Age

To examine age-related heterogeneity in the treatment
effect, we divided the population into seven subgroups,
defined by the following age brackets: 0-17, 18-24, 25-34,
35-44, 45-54, 55-64, and over 65. Estimated subgroup

ATEs are plotted in Fig. 3 and reported in Table IV.
We find that the age bracket 25-34 had the largest sub-

group ATE. Conway (2020) notes that this age bracket
also exhibits the highest health uninsurance rates. He
argues that many individuals in this age range have re-
cently dropped out of their parents’ insurance coverage,
since young adults in the US can only remain dependent
on their parents’ health plans until the age of 26. How-
ever, since most 25-34 year-olds tend to be in good health,
they may not be willing to pay much money to enrol in
a new insurance plan. Hence many of these individuals
would rather remain uninsured, unless given access to
affordable public health insurance.
The uninsured rate steadily falls for older age brack-

ets(Conway, 2020); these individuals typically start to
incur greater health problems, so they may have already
obtained insurance outside of Medicaid. Treatment ef-
fects of Medicaid expansions therefore peak in the 25-34
age bracket.

D. Educational attainment

To examine education-related heterogeneity, we di-
vided the population into five subgroups. The highest
level of educational attainment in each subgroup was re-
spectively:

1. Less than primary school

2. More than primary school but less than having
graduated from high school

3. A high school diploma or equivalent

4. At least some college education, up to having com-
pleted an undergraduate degree

5. A postgraduate degree

Estimated subgroup ATEs are plotted in Fig. 3 and
reported in Table IV. The subgroup ATE was highest
for category 3, i.e. for those whose highest educational
attainment was a high school diploma or equivalent.
Most individuals with less education than a high school

diploma are children. However, many children in low-
income families were already eligible for Medicaid pre-
expansion, so they were not as strongly impacted by the
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FIG. 3. Estimated subgroup ATEs by age (left panel) and educational attainment (right panel). Plotted with 95% confidence
intervals.

TABLE IV. Estimated subgroup ATEs.

Subgroup
Estimated

subgroup ATE
(to 4 decimal places)

Standard error
(to 5 decimal places)

0.005010.0111Aged 0-17
0.012360.0409Aged 18-24
0.008750.0425Aged 25-34
0.006090.0375Aged 35-44
0.005470.0313Aged 45-54
0.004530.0240Aged 55-64
0.001930.0048Aged 65 or older
0.004250.0133Less than primary school education
0.005020.0259More than primary school education but less than having graduated high school
0.006910.0336Highest level of education is a high school diploma or equivalent
0.004540.0232At least some college education, up to completing an undergraduate degree
0.002190.0095Has a postgraduate degree
0.009850.0336Speaks a language other than English at home
0.004320.0220Does not speak a language other than English at home
0.006980.0346In private for-profit employment
0.003330.0177Not in private for-profit employment

expansions themselves. By contrast, many individuals at
a high school diploma level are working adults, of whom
a significant proportion became Medicaid-eligible for the
first time due to the expansions. This may explain why
treatment effects are higher on average for individuals at
a high school diploma level, compared to individuals who
have not yet graduated high school.

On the other end of the educational spectrum, univer-
sity graduates typically earn higher incomes than high
school graduates, as well as being more likely to work in
jobs that already offer extensive health insurance bene-
fits(US Institute of Medicine, 2001). This might explain
why university graduates are less responsive to Medicaid
expansions, as compared to high school graduates.

E. Speaking a language other than English at home

We split the population into two subgroups: those that
spoke a language other than English at home, and those
that spoke English at home. Estimating the subgroup
ATEs revealed that on average, the former subgroup re-
sponded more strongly to the Medicaid expansions; see
Table IV.
Those that speak a language other than English at

home usually belong to a racial, cultural or linguistic
minority within the US. Individuals in minority groups
typically have lower incomes, making it hard for them
to afford private insurance. Furthermore, they are less
likely to work in sectors offering health insurance bene-
fits(Artiga, Hill, Orgera and Damico, 2021). Both factors
mean that minorities rely more extensively on affordable
public health insurance, making them more responsive to
the Medicaid expansions.
Moreover, many minorities have reduced cultural, lin-
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guistic or institutional familiarity with the US, mean-
ing they face particularly strong administrative and
informational barriers to insurance enrolment(Stuber,
Maloy, Rosenbaum and Jones, 2000). Such barriers
were, however, reduced by Medicaid expansions. For in-
stance, many states that expanded Medicaid also spon-
sored advertisement campaigns to improve information
about health insurance options(Karaca-Mandic, Wilcock,
Baum, Barry, Fowler, Niederdeppe and Gollust, 2010).
This may have helped stimulate a large response to Med-
icaid expansions among minorities.

F. Private for-profit employment

The estimated subgroup ATE for those in private for-
profit employment was 3.46 percentage points. This was
higher than the ATE over the whole population, which
was 2.41 percentage points. The higher-than-average re-
sponsiveness of those in private for-profit employment
could stem from the fact that employer-provided cover-
age in the private sector has been steadily decreasing in
amount and rising in cost(Claxton, Larry and Damico,
2016). As private-sector employees struggle to obtain
affordable coverage from their employers, many are in-
creasingly enrolling in public insurance programmes in-
stead(Strane, Kanter, Matone, Glaser and Rubin, 2019),
hence their strong reaction to an expansion in Medicaid
eligibility.

This was not a variable which we had anticipated to
be important pre-analysis. Indeed, earlier studies of the
Medicaid expansions17 did not consider this variable, so
our discovery of it is an important contribution to the
literature. This demonstrates the value of a machine
learning approach: we were able to remain agnostic pre-
analysis about which variables were important, while let-
ting the algorithm discover such variables for us during
the analysis phase.

VI. CONCLUSION

In this paper we estimated the heterogeneous treat-
ment effects of Medicaid expansions on insurance cover-
age, using an observational study based on 2014 cross-
sectional data. We emphasised that estimating heteroge-
neous treatment effects let us determine which individ-
uals were most responsive to the expansions. Such indi-
viduals could be targeted by future Medicaid policies, so
this evidence is of key interest for policymakers.

We found strong overall evidence of heterogeneity in
our estimated CATEs. We also found that particularly
responsive individuals were typically aged 25-34; had
a high school diploma as their highest level of educa-
tional attainment; spoke a language other than English
at home, and/or were in private for-profit employment.

Hence, one potential targeted Medicaid policy could be
an expansion of eligibility to individuals with incomes be-
low 138% of the federal poverty line, provided that they
belong to one of the categories above.

Our usage of causal forests to estimate CATEs is a
key contribution of this paper. The advantage of this
approach over more traditional methods is exemplified
by our discovery that private for-profit employment was
a highly important variable. This variable was missed
by prior studies that relied on pre-specified subgroup
analyses, demonstrating how novel machine learning ap-
proaches can bring new evidence to the existing litera-
ture.

There are some limitations to our study. Firstly, our
identification strategy assumed that unconfoundedness
held after controlling for state political affiliation, state
expenditure per capita, and whether insurance exchanges
were state- or federally-run. We have argued in favour of
this approach given the institutional context of the ACA,
but it is never fully possible to rule out the possibility of
unobserved confounders which we failed to control for.

Another point to acknowledge is that, while our es-
timates of heterogeneous treatment effects would be a
crucial piece of evidence in designing targeted Medicaid
programmes, they would not be the only factor to con-
sider. In particular, there are also complex ethical is-
sues in designing targeted programmes, which we have
mostly left outside the scope of this paper. Notably, our
results suggest targeting Medicaid towards minority sub-
groups, particularly those not speaking English at home.
This would essentially form an ‘affirmative action’ policy,
which remains a contentious subject of ethical debate in
the US. Proponents of affirmative action argue that it re-
dresses the historic oppression of minorities; meanwhile,
critics view it as an unjust form of reverse discrimina-
tion(Chemerinsky, 1996).

An interesting extension to this paper would be to take
a stance on the social welfare function, accounting for
potential equity concerns such as the debate on affir-
mative action. We might also wish to consider hetero-
geneous costs of programme implementation(Davis and
Heller, 2020) – for instance, it might be more expensive
to target minority subgroups who face informational bar-
riers to Medicaid enrolment, as doing so effectively would
require states to spend more on advertising campaigns.
By combining these elements with our existing evidence
on heterogeneous treatment effects, we could carry out a
complete social cost-benefit analysis to select the optimal
targeted policy. One paper taking this approach is Knit-
tel and Stolper (2021); in their particular case study, they
find that policy targeting based on causal forest estimates
delivers significantly higher net social benefits than other
targeting methods. This is an exciting avenue for future
research, and it could yield rich insights for policymakers
seeking to design socially optimal targeted policies.
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